Skip to main content

Advertisement

Log in

Neuroanatomical substrates of depression in dementia with Lewy bodies and Alzheimer’s disease

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD) are often associated with depressive symptoms from the prodromal stage. The aim of the present study was to investigate the neuroanatomical correlates of depression in prodromal to mild DLB patients compared with AD patients. Eighty-three DLB patients, 37 AD patients, and 18 healthy volunteers were enrolled in this study. Depression was evaluated with the Mini International Neuropsychiatric Interview (MINI), French version 5.0.0. T1-weighted three-dimensional anatomical images were acquired for all participants. Regression and comparison analyses were conducted using a whole-brain voxel-based morphometry (VBM) approach on the grey matter volume (GMV). DLB patients presented a significantly higher mean MINI score than AD patients (p = 0.004), 30.1% of DLB patients had clinical depression, and 56.6% had a history of depression, while 0% of AD patients had clinical depression and 29.7% had a history of depression. VBM regression analyses revealed negative correlations between the MINI score and the GMV of right prefrontal regions in DLB patients (p < 0.001, uncorrected). Comparison analyses between DLB patients taking and those not taking an antidepressant mainly highlighted a decreased GMV in the bilateral middle/inferior temporal gyrus (p < 0.001, uncorrected) in treated DLB patients. In line with the literature, our behavioral analyses revealed higher depression scores in DLB patients than in AD patients. We also showed that depressive symptoms in DLB are associated with decreased GMV in right prefrontal regions. Treated DLB patients with long-standing depression would be more likely to experience GMV loss in the bilateral middle/inferior temporal cortex. These findings should be taken into account when managing DLB patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies. Neurology. 2017;89:88–100. https://doi.org/10.1212/WNL.0000000000004058.

    Article  PubMed  PubMed Central  Google Scholar 

  2. McKeith IG, Ferman TJ, Thomas AJ, Blanc F, Boeve BF, Fujishiro H, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94:743–55. https://doi.org/10.1212/WNL.0000000000009323.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cuijpers P, Koole SL, van Dijke A, Roca M, Li J, Reynolds CF. Psychotherapy for subclinical depression: meta-analysis. Br J Psychiatry. 2014;205:268–74. https://doi.org/10.1192/bjp.bp.113.138784.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wyman-Chick KA, O’Keefe LR, Weintraub D, Armstrong MJ, Rosenbloom M, Martin PK, et al. Prodromal dementia with Lewy bodies: evolution of symptoms and predictors of dementia onset. J Geriatr Psychiatry Neurol. 2022;35:527–34. https://doi.org/10.1177/08919887211023586.

    Article  PubMed  Google Scholar 

  5. Utsumi K, Fukatsu R, Hara Y, Takamaru Y, Yasumura S. Psychotic features among patients in the prodromal stage of dementia with lewy bodies during longitudinal observation. J Alzheimers Dis. 2021;83:1917–27. https://doi.org/10.3233/JAD-210416.

    Article  PubMed  Google Scholar 

  6. Blanc F, Bouteloup V, Paquet C, Chupin M, Pasquier F, Gabelle A, et al. Prodromal characteristics of dementia with Lewy bodies: baseline results of the MEMENTO memory clinics nationwide cohort. Alzheimers Res Ther. 2022;14:96. https://doi.org/10.1186/s13195-022-01037-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Auning E, Rongve A, Fladby T, Booij J, Hortobágyi T, Siepel FJ, et al. Early and presenting symptoms of dementia with lewy bodies. Dement Geriatr Cogn Disord. 2011;32:202–8. https://doi.org/10.1159/000333072.

    Article  PubMed  Google Scholar 

  8. Almeida L, Ahmed B, Walz R, De Jesus S, Patterson A, Martinez-Ramirez D, et al. Depressive symptoms are frequent in atypical parkinsonian disorders. Mov Disord Clin Pract. 2016;4:191–7. https://doi.org/10.1002/mdc3.12382.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Takahashi S, Mizukami K, Yasuno F, Asada T. Depression associated with dementia with Lewy bodies (DLB) and the effect of somatotherapy. Psychogeriatrics. 2009;9:56–61. https://doi.org/10.1111/j.1479-8301.2009.00292.x.

    Article  PubMed  Google Scholar 

  10. Fernández M, Gobartt AL, Balañá M. Behavioural symptoms in patients with Alzheimer’s disease and their association with cognitive impairment. BMC Neurol. 2010;10:87. https://doi.org/10.1186/1471-2377-10-87.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Enache D, Winblad B, Aarsland D. Depression in dementia: epidemiology, mechanisms, and treatment. Curr Opin Psychiatry. 2011;24:461–72. https://doi.org/10.1097/YCO.0b013e32834bb9d4.

    Article  PubMed  Google Scholar 

  12. Fritze F, Ehrt U, Sønnesyn H, Kurz M, Hortobágyi T, Nore SP, et al. Depression in mild dementia: associations with diagnosis, APOE genotype and clinical features. Int J Geriatr Psychiatry. 2011;26:1054–61. https://doi.org/10.1002/gps.2643.

    Article  PubMed  Google Scholar 

  13. Andreasen P, Lönnroos E, von Euler-Chelpin MC. Prevalence of depression among older adults with dementia living in low- and middle-income countries: a cross-sectional study. Eur J Public Health. 2014;24:40–4. https://doi.org/10.1093/eurpub/ckt014.

    Article  PubMed  Google Scholar 

  14. Chiu P-Y, Wang C-W, Tsai C-T, Li S-H, Lin C-L, Lai T-J. Depression in dementia with Lewy bodies: a comparison with Alzheimer’s disease. PLoS One. 2017;12:e0179399. https://doi.org/10.1371/journal.pone.0179399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van de Beek M, van Steenoven I, van der Zande JJ, Barkhof F, Teunissen CE, van der Flier WM, et al. Prodromal Dementia With Lewy Bodies: Clinical Characterization and Predictors of Progression. Mov Disord. 2020;35:859–67. https://doi.org/10.1002/mds.27997.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sakai K, Yamane Y, Yamamoto Y. Maeda K [Depression in dementia with Lewy bodies]. Seishin Shinkeigaku Zasshi. 2013;115:1127–34.

    PubMed  Google Scholar 

  17. Yamane Y, Sakai K, Maeda K. Dementia with lewy bodies is associated with higher scores on the geriatric depression scale than is Alzheimer’s disease. Psychogeriatrics. 2011;11:157–65. https://doi.org/10.1111/j.1479-8301.2011.00368.x.

    Article  PubMed  Google Scholar 

  18. Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, Williams LM. Widespread reductions in gray matter volume in depression. Neuroimage Clin. 2013;3:332–9. https://doi.org/10.1016/j.nicl.2013.08.016.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Hou Z, Yin Y, Xie C, Zhang H, Zhang H, et al. Decreased cortical thickness of left premotor cortex as a treatment predictor in major depressive disorder. Brain Imaging Behav. 2021;15:1420–6. https://doi.org/10.1007/s11682-020-00341-3.

    Article  PubMed  Google Scholar 

  20. Kandilarova S, Stoyanov D, Sirakov N, Maes M, Specht K. Reduced grey matter volume in frontal and temporal areas in depression: contributions from voxel-based morphometry study. Acta Neuropsychiatr. 2019;31:252–7. https://doi.org/10.1017/neu.2019.20.

    Article  PubMed  Google Scholar 

  21. Zacková MGRL, Jáni MGRM, Brázdil M, Nikolova YS, Marečková K. Cognitive impairment and depression: Meta-analysis of structural magnetic resonance imaging studies. Neuroimage Clin. 2021;32:102830. https://doi.org/10.1016/j.nicl.2021.102830.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wise T, Radua J, Via E, Cardoner N, Abe O, Adams TM, et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Mol Psychiatry. 2017;22:1455–63. https://doi.org/10.1038/mp.2016.72.

    Article  CAS  PubMed  Google Scholar 

  23. Chen L, Wang Y, Niu C, Zhong S, Hu H, Chen P, et al. Common and distinct abnormal frontal-limbic system structural and functional patterns in patients with major depression and bipolar disorder. Neuroimage Clin. 2018;20:42–50. https://doi.org/10.1016/j.nicl.2018.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abe O, Yamasue H, Kasai K, Yamada H, Aoki S, Inoue H, et al. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res. 2010;181:64–70. https://doi.org/10.1016/j.pscychresns.2009.07.007.

    Article  PubMed  Google Scholar 

  25. Gray JP, Müller VI, Eickhoff SB, Fox PT. Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies. Am J Psychiatry. 2020;177:422–34. https://doi.org/10.1176/appi.ajp.2019.19050560.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zheng R, Zhang Y, Yang Z, Han S, Cheng J. Reduced brain gray matter volume in patients with first-episode major depressive disorder: a quantitative meta-analysis. Front Psychiatry. 2021;12:671348. https://doi.org/10.3389/fpsyt.2021.671348.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Peng W, Chen Z, Yin L, Jia Z, Gong Q. Essential brain structural alterations in major depressive disorder: a voxel-wise meta-analysis on first episode, medication-naive patients. J Affect Disord. 2016;199:114–23. https://doi.org/10.1016/j.jad.2016.04.001.

    Article  PubMed  Google Scholar 

  28. Yang Y, Li X, Cui Y, Liu K, Qu H, Lu Y, et al. Reduced gray matter volume in orbitofrontal cortex across schizophrenia, major depressive disorder, and bipolar disorder: a comparative imaging study. Front Neurosci. 2022;16:919272. https://doi.org/10.3389/fnins.2022.919272.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim Y-K, Han K-M. Neural substrates for late-life depression: a selective review of structural neuroimaging studies. Prog Neuropsychopharmacol Biol Psychiatry. 2021;104:110010. https://doi.org/10.1016/j.pnpbp.2020.110010.

    Article  PubMed  Google Scholar 

  30. Harada K, Matsuo K, Nakashima M, Hobara T, Higuchi N, Higuchi F, et al. Disrupted orbitomedial prefrontal limbic network in individuals with later-life depression. J Affect Disord. 2016;204:112–9. https://doi.org/10.1016/j.jad.2016.06.031.

    Article  PubMed  Google Scholar 

  31. Egger K, Schocke M, Weiss E, Auffinger S, Esterhammer R, Goebel G, et al. Pattern of brain atrophy in elderly patients with depression revealed by voxel-based morphometry. Psychiatry Res. 2008;164:237–44. https://doi.org/10.1016/j.pscychresns.2007.12.018.

    Article  PubMed  Google Scholar 

  32. Du M, Liu J, Chen Z, Huang X, Li J, Kuang W, et al. Brain grey matter volume alterations in late-life depression. J Psychiatry Neurosci. 2014;39:397–406. https://doi.org/10.1503/jpn.130275.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hwang J-P, Lee T-W, Tsai S-J, Chen T-J, Yang C-H, Lirng J-F, et al. Cortical and subcortical abnormalities in late-onset depression with history of suicide attempts investigated with MRI and voxel-based morphometry. J Geriatr Psychiatry Neurol. 2010;23:171–84. https://doi.org/10.1177/0891988710363713.

    Article  PubMed  Google Scholar 

  34. Blanc F, Colloby SJ, Cretin B, de Sousa PL, Demuynck C, O’Brien JT, et al. Grey matter atrophy in prodromal stage of dementia with Lewy bodies and Alzheimer’s disease. Alzheimers Res Ther. 2016;8:31. https://doi.org/10.1186/s13195-016-0198-6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Blanc F, Colloby SJ, Philippi N, de Pétigny X, Jung B, Demuynck C, et al. Cortical thickness in dementia with lewy bodies and Alzheimer’s disease: a comparison of prodromal and dementia stages. PLoS One. 2015;10:e0127396. https://doi.org/10.1371/journal.pone.0127396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roquet D, Noblet V, Anthony P, Philippi N, Demuynck C, Cretin B, et al. Insular atrophy at the prodromal stage of dementia with Lewy bodies: a VBM DARTEL study. Sci Rep. 2017;7:9437. https://doi.org/10.1038/s41598-017-08667-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patterson L, Rushton SP, Attems J, Thomas AJ, Morris CM. Degeneration of dopaminergic circuitry influences depressive symptoms in Lewy body disorders. Brain Pathol. 2019;29:544–57. https://doi.org/10.1111/bpa.12697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saari L, Heiskanen L, Gardberg M, Kaasinen V. Depression and nigral neuron density in lewy body spectrum diseases. Ann Neurol. 2021;89:1046–50. https://doi.org/10.1002/ana.26046.

    Article  PubMed  Google Scholar 

  39. Benarroch EE, Schmeichel AM, Sandroni P, Parisi JE, Low PA. Rostral raphe involvement in Lewy body dementia and multiple system atrophy. Acta Neuropathol. 2007;114:213–20. https://doi.org/10.1007/s00401-007-0260-3.

    Article  CAS  PubMed  Google Scholar 

  40. Mizutani M, Sano T, Ohira M, Takao M. Neuropathological studies of serotonergic and noradrenergic systems in Lewy body disease patients with delusion or depression. Psychiatry Clin Neurosci. 2022;76:459–67. https://doi.org/10.1111/pcn.13436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lebedev AV, Beyer MK, Fritze F, Westman E, Ballard C, Aarsland D. Cortical changes associated with depression and antidepressant use in Alzheimer and Lewy body dementia: an MRI surface-based morphometric study. Am J Geriatr Psychiatry. 2014;22:4-13.e1. https://doi.org/10.1016/j.jagp.2013.02.004.

    Article  PubMed  Google Scholar 

  42. Shimoda K, Kimura M, Yokota M, Okubo Y. Comparison of regional gray matter volume abnormalities in Alzheimer׳s disease and late life depression with hippocampal atrophy using VSRAD analysis: a voxel-based morphometry study. Psychiatry Res. 2015;232:71–5. https://doi.org/10.1016/j.pscychresns.2015.01.018.

    Article  PubMed  Google Scholar 

  43. Son JH, Han DH, Min KJ, Kee BS. Correlation between gray matter volume in the temporal lobe and depressive symptoms in patients with Alzheimer’s disease. Neurosci Lett. 2013;548:15–20. https://doi.org/10.1016/j.neulet.2013.05.021.

    Article  CAS  PubMed  Google Scholar 

  44. Wu Y, Wu X, Wei Q, Wang K, Tian Y. Differences in cerebral structure associated with depressive symptoms in the elderly with Alzheimer’s disease. Front Aging Neurosci. 2020;12:107. https://doi.org/10.3389/fnagi.2020.00107.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hu X, Meiberth D, Newport B, Jessen F. Anatomical correlates of the neuropsychiatric symptoms in Alzheimer’s disease. Curr Alzheimer Res. 2015;12:266–77. https://doi.org/10.2174/1567205012666150302154914.

    Article  CAS  PubMed  Google Scholar 

  46. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–46. https://doi.org/10.1016/S1474-4422(07)70178-3.

    Article  PubMed  Google Scholar 

  47. Ferman TJ, Smith GE, Boeve BF, Ivnik RJ, Petersen RC, Knopman D, et al. DLB fluctuations: specific features that reliably differentiate DLB from AD and normal aging. Neurology. 2004;62:181–7. https://doi.org/10.1212/wnl.62.2.181.

    Article  CAS  PubMed  Google Scholar 

  48. Fénelon G, Soulas T, Zenasni F, de Langavant LC. The changing face of Parkinson’s disease-associated psychosis: a cross-sectional study based on the new NINDS-NIMH criteria. Mov Disord. 2010;25:763–6. https://doi.org/10.1002/mds.22839.

    Article  PubMed  Google Scholar 

  49. Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord 2003;18:738–50. https://doi.org/10.1002/mds.10473

  50. Gjerstad MD, Boeve B, Wentzel-Larsen T, Aarsland D, Larsen JP. Occurrence and clinical correlates of REM sleep behaviour disorder in patients with Parkinson’s disease over time. J Neurol Neurosurg Psychiatry. 2008;79:387–91. https://doi.org/10.1136/jnnp.2007.116830.

    Article  CAS  PubMed  Google Scholar 

  51. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. https://doi.org/10.1016/0022-3956(75)90026-6.

    Article  CAS  PubMed  Google Scholar 

  52. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(Suppl 20):22–33.

    PubMed  Google Scholar 

  53. Wahab S, Chua TY, Razali R, Mat Saher Z, Zamzam IH, Bujang MA. Suicidal behavior among elderly inpatients: its relation to functional disability and pain. Psychol Res Behav Manag. 2022;15:737–50. https://doi.org/10.2147/PRBM.S341768.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lin Y, Liyanage BN, Sun Y, Lu T, Zhu Z, Liao Y, et al. A deep learning-based model for detecting depression in senior population. Front Psychiatry. 2022;13:1016676. https://doi.org/10.3389/fpsyt.2022.1016676.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu M-E, Chang Y-H, Ku Y-C, Lee S-Y, Huang C-C, Chen S-L, et al. Executive functions in elderly men. Age (Dordr). 2012;34:59–66. https://doi.org/10.1007/s11357-011-9215-7.

    Article  PubMed  Google Scholar 

  56. Oh DJ, Han JW, Bae JB, Kim TH, Kwak KP, Kim BJ, et al. Executive dysfunction and risk of suicide in older adults: a population-based prospective cohort study. J Neurol Neurosurg Psychiatry. 2021;92:528–33. https://doi.org/10.1136/jnnp-2020-324390.

    Article  PubMed  Google Scholar 

  57. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14:21–36. https://doi.org/10.1006/nimg.2001.0786.

    Article  CAS  PubMed  Google Scholar 

  58. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26:839–51. https://doi.org/10.1016/j.neuroimage.2005.02.018.

    Article  PubMed  Google Scholar 

  59. Verdaguer ES, Stafford J, Tuijt R, Orgeta V. Minor and subthreshold depressive disorders in Alzheimer’s disease: a systematic review and meta-analysis of prevalence studies. J Affect Disord. 2020;263:728–34. https://doi.org/10.1016/j.jad.2019.11.053.

    Article  PubMed  Google Scholar 

  60. Asmer MS, Kirkham J, Newton H, Ismail Z, Elbayoumi H, Leung RH, et al. Meta-analysis of the prevalence of major depressive disorder among older adults with dementia. J Clin Psychiatry. 2018;79:17r11772. https://doi.org/10.4088/JCP.17r11772.

    Article  PubMed  Google Scholar 

  61. Römer B, Dalen I, Ballard C, Aarsland D. The course of depressive symptoms in Lewy body dementia and Alzheimer’s disease. J Affect Disord. 2023;333:459–67. https://doi.org/10.1016/j.jad.2023.04.076.

    Article  CAS  PubMed  Google Scholar 

  62. Chendo I, Silva C, Duarte GS, Prada L, Vian J, Quintão A, et al. Frequency of depressive disorders in parkinson’s disease: a systematic review and meta-analysis. J Parkinsons Dis. 2022;12:1409–18. https://doi.org/10.3233/JPD-223207.

    Article  CAS  PubMed  Google Scholar 

  63. Iritani S, Tsuchiya K, Arai T, Akiyama H, Ikeda K. An atypical autopsy case of Lewy body disease with clinically diagnosed major depression: a clinical, radiological and pathological study. Neuropathology. 2008;28:652–9. https://doi.org/10.1111/j.1440-1789.2008.00905.x.

    Article  PubMed  Google Scholar 

  64. Ishiguro M, Baba H, Maeshima H, Shimano T, Inoue M, Ichikawa T, et al. Increased serum levels of α-synuclein in patients with major depressive disorder. Am J Geriatr Psychiatry. 2019;27:280–6. https://doi.org/10.1016/j.jagp.2018.10.015.

    Article  PubMed  Google Scholar 

  65. Elder GJ, Colloby SJ, Lett DJ, O’Brien JT, Anderson KN, Burn DJ, et al. Depressive symptoms are associated with daytime sleepiness and subjective sleep quality in dementia with Lewy bodies. Int J Geriatr Psychiatry. 2016;31:765–70. https://doi.org/10.1002/gps.4389.

    Article  PubMed  Google Scholar 

  66. Del Pino R, Murueta-Goyena A, Acera M, Carmona-Abellan M, Tijero B, Lucas-Jiménez O, et al. Autonomic dysfunction is associated with neuropsychological impairment in Lewy body disease. J Neurol. 2020;267:1941–51. https://doi.org/10.1007/s00415-020-09783-7.

    Article  CAS  PubMed  Google Scholar 

  67. Schaffert J, LoBue C, White CL, Wilmoth K, Didehbani N, Lacritz L, et al. Risk factors for earlier dementia onset in autopsy-confirmed Alzheimer’s disease, mixed Alzheimer’s with Lewy bodies, and pure Lewy body disease. Alzheimers Dement. 2020;16:524–30. https://doi.org/10.1002/alz.12049.

    Article  PubMed  Google Scholar 

  68. Kazmi H, Walker Z, Booij J, Khan F, Shah S, Sudre CH, et al. Late onset depression: dopaminergic deficit and clinical features of prodromal Parkinson’s disease: a cross-sectional study. J Neurol Neurosurg Psychiatry. 2021;92:158–64. https://doi.org/10.1136/jnnp-2020-324266.

    Article  PubMed  Google Scholar 

  69. Boot BP, Orr CF, Ahlskog JE, Ferman TJ, Roberts R, Pankratz VS, et al. Risk factors for dementia with Lewy bodies: a case-control study. Neurology. 2013;81:833–40. https://doi.org/10.1212/WNL.0b013e3182a2cbd1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bennett S, Thomas AJ. Depression and dementia: cause, consequence or coincidence? Maturitas. 2014;79:184–90. https://doi.org/10.1016/j.maturitas.2014.05.009.

    Article  PubMed  Google Scholar 

  71. Kessing LV. Depression and the risk for dementia. Curr Opin Psychiatry. 2012;25:457–61. https://doi.org/10.1097/YCO.0b013e328356c368.

    Article  PubMed  Google Scholar 

  72. Jones DT, Graff-Radford J. Executive dysfunction and the prefrontal cortex. Continuum (Minneap Minn). 2021;27:1586–601. https://doi.org/10.1212/CON.0000000000001009.

    Article  PubMed  Google Scholar 

  73. Rabinovici GD, Stephens ML, Possin KL. Executive dysfunction. Continuum (Minneap Minn). 2015;21:646–59. https://doi.org/10.1212/01.CON.0000466658.05156.54.

    Article  PubMed  Google Scholar 

  74. Berboth S, Windischberger C, Kohn N, Morawetz C. Test-retest reliability of emotion regulation networks using fMRI at ultra-high magnetic field. Neuroimage. 2021;232:117917. https://doi.org/10.1016/j.neuroimage.2021.117917.

    Article  PubMed  Google Scholar 

  75. Golkar A, Lonsdorf TB, Olsson A, Lindstrom KM, Berrebi J, Fransson P, et al. Distinct contributions of the dorsolateral prefrontal and orbitofrontal cortex during emotion regulation. PLoS One. 2012;7:e48107. https://doi.org/10.1371/journal.pone.0048107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goldin PR, McRae K, Ramel W, Gross JJ. The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol Psychiatry. 2008;63:577–86. https://doi.org/10.1016/j.biopsych.2007.05.031.

    Article  PubMed  Google Scholar 

  77. Underwood R, Tolmeijer E, Wibroe J, Peters E, Mason L. Networks underpinning emotion: a systematic review and synthesis of functional and effective connectivity. Neuroimage. 2021;243:118486. https://doi.org/10.1016/j.neuroimage.2021.118486.

    Article  PubMed  Google Scholar 

  78. Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res. 2009;201:239–43. https://doi.org/10.1016/j.bbr.2009.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pirau L, Lui F. Frontal Lobe Syndrome. StatPearls, Treasure Island (FL): StatPearls Publishing; 2023.

    Google Scholar 

  80. Szczepanski SM, Knight RT. Insights into human behavior from lesions to the prefrontal cortex. Neuron. 2014;83:1002–18. https://doi.org/10.1016/j.neuron.2014.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lefaucheur J-P, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin Neurophysiol. 2020;131:474–528. https://doi.org/10.1016/j.clinph.2019.11.002.

    Article  PubMed  Google Scholar 

  82. Gainotti G. Emotions and the right hemisphere: can new data clarify old models? Neuroscientist. 2019;25:258–70. https://doi.org/10.1177/1073858418785342.

    Article  PubMed  Google Scholar 

  83. Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology. 2022;47:225–46. https://doi.org/10.1038/s41386-021-01101-7.

    Article  PubMed  Google Scholar 

  84. Tisserand A, Philippi N, Botzung A, Blanc F. Me, myself and my insula: an oasis in the forefront of self-consciousness. Biology (Basel). 2023;12:599. https://doi.org/10.3390/biology12040599.

    Article  PubMed  Google Scholar 

  85. Uddin LQ, Iacoboni M, Lange C, Keenan JP. The self and social cognition: the role of cortical midline structures and mirror neurons. Trends Cogn Sci. 2007;11:153–7. https://doi.org/10.1016/j.tics.2007.01.001.

    Article  PubMed  Google Scholar 

  86. Frewen P, Schroeter ML, Riva G, Cipresso P, Fairfield B, Padulo C, et al. Neuroimaging the consciousness of self: review, and conceptual-methodological framework. Neurosci Biobehav Rev. 2020;112:164–212. https://doi.org/10.1016/j.neubiorev.2020.01.023.

    Article  PubMed  Google Scholar 

  87. Renner F, Siep N, Arntz A, van de Ven V, Peeters FPML, Quaedflieg CWEM, et al. Negative mood-induction modulates default mode network resting-state functional connectivity in chronic depression. J Affect Disord. 2017;208:590–6. https://doi.org/10.1016/j.jad.2016.10.022.

    Article  PubMed  Google Scholar 

  88. Zanigni S, Sambati L, Evangelisti S, Testa C, Calandra-Buonaura G, Manners DN, et al. Precuneal thickness and depression in parkinson disease. Neurodegener Dis. 2017;17:97–102. https://doi.org/10.1159/000450614.

    Article  PubMed  Google Scholar 

  89. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiat. 2015;72:603–11. https://doi.org/10.1001/jamapsychiatry.2015.0071.

    Article  Google Scholar 

  90. Keren H, O’Callaghan G, Vidal-Ribas P, Buzzell GA, Brotman MA, Leibenluft E, et al. Reward processing in depression: a conceptual and meta-analytic review across fMRI and EEG studies. Am J Psychiatry. 2018;175:1111–20. https://doi.org/10.1176/appi.ajp.2018.17101124.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lowther ER, O’Brien JT, Firbank MJ, Blamire AM. Lewy body compared with Alzheimer dementia is associated with decreased functional connectivity in resting state networks. Psychiatry Res. 2014;223:192–201. https://doi.org/10.1016/j.pscychresns.2014.06.004.

    Article  PubMed  Google Scholar 

  92. Pezzoli S, De Marco M, Zorzi G, Cagnin A, Venneri A. Functional brain connectivity patterns associated with visual hallucinations in dementia with Lewy bodies. J Alzheimers Dis Rep. 2021;5:311–20. https://doi.org/10.3233/ADR-200288.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chabran E, Noblet V, Loureiro de Sousa P, Demuynck C, Philippi N, Mutter C, et al. Changes in gray matter volume and functional connectivity in dementia with Lewy bodies compared to Alzheimer’s disease and normal aging: implications for fluctuations. Alzheimers Res Ther 2020;12:9. https://doi.org/10.1186/s13195-019-0575-z.

  94. Videbech P, Yttri J-E. The effect of antidepressants on brain volume. Ugeskr Laeger. 2019;181:V02190087.

    PubMed  Google Scholar 

  95. Jung J, Kang J, Won E, Nam K, Lee M-S, Tae WS, et al. Impact of lingual gyrus volume on antidepressant response and neurocognitive functions in Major Depressive Disorder: a voxel-based morphometry study. J Affect Disord. 2014;169:179–87. https://doi.org/10.1016/j.jad.2014.08.018.

    Article  PubMed  Google Scholar 

  96. Thompson AE, Thompson PD. Frontal lobe motor syndromes. Handb Clin Neurol. 2023;196:443–55. https://doi.org/10.1016/B978-0-323-98817-9.00008-9.

    Article  PubMed  Google Scholar 

  97. Das JM, Saadabadi A. Abulia. InStatPearls [Internet] 2023. StatPearls Publishing.

  98. Jellinger KA. Depression in dementia with Lewy bodies: a critical update. J Neural Transm (Vienna). 2023;130:1207–18. https://doi.org/10.1007/s00702-023-02669-8.

    Article  CAS  PubMed  Google Scholar 

  99. Culo S, Mulsant BH, Rosen J, Mazumdar S, Blakesley RE, Houck PR, et al. Treating neuropsychiatric symptoms in dementia with Lewy bodies: a randomized controlled-trial. Alzheimer Dis Assoc Disord. 2010;24:360–4. https://doi.org/10.1097/WAD.0b013e3181e6a4d7.

    Article  PubMed  Google Scholar 

  100. Zhang Y-N, Li H, Shen Z-W, Xu C, Huang Y-J, Wu R-H. Healthy individuals vs patients with bipolar or unipolar depression in gray matter volume. World J Clin Cases. 2021;9:1304–17. https://doi.org/10.12998/wjcc.v9.i6.1304.

  101. Mohamed Nour AEA, Jiao Y, Teng G-J. Alzheimer’s Disease Neuroimaging Initiative. Neuroanatomical associations of depression, anxiety and apathy neuropsychiatric symptoms in patients with Alzheimer’s disease. Acta Neurol Belg. 2021;121:1469–80. https://doi.org/10.1007/s13760-020-01349-8.

    Article  PubMed  Google Scholar 

  102. Takahashi T, Yücel M, Lorenzetti V, Walterfang M, Kawasaki Y, Whittle S, et al. An MRI study of the superior temporal subregions in patients with current and past major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:98–103. https://doi.org/10.1016/j.pnpbp.2009.10.005.

    Article  PubMed  Google Scholar 

  103. Herlin B, Navarro V, Dupont S. The temporal pole: from anatomy to function-a literature appraisal. J Chem Neuroanat. 2021;113:101925. https://doi.org/10.1016/j.jchemneu.2021.101925.

    Article  PubMed  Google Scholar 

  104. Wong C, Gallate J. The function of the anterior temporal lobe: a review of the empirical evidence. Brain Res. 2012;1449:94–116. https://doi.org/10.1016/j.brainres.2012.02.017.

    Article  CAS  PubMed  Google Scholar 

  105. Olson IR, Plotzker A, Ezzyat Y. The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain. 2007;130:1718–31. https://doi.org/10.1093/brain/awm052.

    Article  PubMed  Google Scholar 

  106. Mesulam MM. Temporopolar regions of the human brain. Brain. 2023;146:20–41. https://doi.org/10.1093/brain/awac339.

    Article  PubMed  Google Scholar 

  107. Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271–8. https://doi.org/10.1016/0197-4580(95)00021-6. (discussion 278-284).

    Article  CAS  PubMed  Google Scholar 

  108. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32. https://doi.org/10.1038/nrn.2016.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jreige M, Kurian GK, Perriraz J, Potheegadoo J, Bernasconi F, Stampacchia S, et al. The diagnostic performance of functional dopaminergic scintigraphic imaging in the diagnosis of dementia with Lewy bodies: an updated systematic review. Eur J Nucl Med Mol Imaging. 2023;50:1988–2035. https://doi.org/10.1007/s00259-023-06154-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and their relatives and to the healthy control subjects who took part in the present study. The authors also thank the medical doctors of the Memory Center of Strasbourg (CM2R), Pierre Anthony, and Catherine Martin-Hunyadi, the neuropsychologists, Timothée Albasser, Mathias Bilger, Laure Di Bitonto, Emmanuelle Epp-Ehrhard, Guillaume Jung, Jennifer Kemp, Catherine Kleitz, Jeanne Mérignac, Laetitia Monjoin, and Clélie Phillipps, the research clinical assistants, Lucie Rauch and Lea Sanna, as well as the secretary, Gabrielle Huck, for the essential collection of the clinical data. Finally, we would like to thank Vincent Gabriel and Alice Tisserand for their valuable help with image pre-processing and VBM analyses.

Funding

This study was funded by Projet Hospitalier de Recherche Clinique (PHRC) inter-régional (IDRCB 2012-A00992-41).

Author information

Authors and Affiliations

Authors

Contributions

The present study was conceptualized, designed and coordinated by F.B., A.B., and M.Q. M.Q. conducted the behavioural and imaging analyses and wrote the article, while A.B. and F.B. played a major role in revising the manuscript. F.B., N.P., B.C., C.D., C.M., A.R., and B.S. were the medical doctors who carried out the clinical examinations and administered the depression scale, and L.S. was the clinical research assistant who took care of gathering information from medical records (i.e., treatments and medical history). P.LS. was in charge of the acquisition of MRI data, and M.M. was a great help with image pre-processing and VBM analyses. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manon Querry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Querry, M., Botzung, A., Cretin, B. et al. Neuroanatomical substrates of depression in dementia with Lewy bodies and Alzheimer’s disease. GeroScience (2024). https://doi.org/10.1007/s11357-024-01190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01190-4

Keywords

Navigation