Skip to main content
Log in

Lifespan effects in male UM-HET3 mice treated with sodium thiosulfate, 16-hydroxyestriol, and late-start canagliflozin

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Genetically heterogeneous UM-HET3 mice born in 2020 were used to test possible lifespan effects of alpha-ketoglutarate (AKG), 2,4-dinitrophenol (DNP), hydralazine (HYD), nebivolol (NEBI), 16α-hydroxyestriol (OH_Est), and sodium thiosulfate (THIO), and to evaluate the effects of canagliflozin (Cana) when started at 16 months of age. OH_Est produced a 15% increase (p = 0.0001) in median lifespan in males but led to a significant (7%) decline in female lifespan. Cana, started at 16 months, also led to a significant increase (14%, p = 0.004) in males and a significant decline (6%, p = 0.03) in females. Cana given to mice at 6 months led, as in our previous study, to an increase in male lifespan without any change in female lifespan, suggesting that this agent may lead to female-specific late-life harm. We found that blood levels of Cana were approximately 20-fold higher in aged females than in young males, suggesting a possible mechanism for the sex-specific disparities in its effects. NEBI was also found to produce a female-specific decline (4%, p = 0.03) in lifespan. None of the other tested drugs provided a lifespan benefit in either sex. These data bring to 7 the list of ITP-tested drugs that induce at least a 10% lifespan increase in one or both sexes, add a fourth drug with demonstrated mid-life benefits on lifespan, and provide a testable hypothesis that might explain the sexual dimorphism in lifespan effects of the SGLT2 inhibitor Cana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Macchiarini F, Miller RA, Strong R, Rosenthal N, Harrison DE. NIA interventions testing program: a collaborative approach for investigating interventions to promote healthy aging. In: Musi N, Hornsby PJ, editors. Handbook of the Biology of Aging. 9th ed. London (UK): Academic Press; 2021.

    Google Scholar 

  2. Harrison DE, Strong R, Reifsnyder P, Rosenthal N, Korstanje R, Fernandez E, et al. Astaxanthin and meclizine extend lifespan in UM-HET3 male mice; fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate do not significantly affect lifespan in either sex at the doses and schedules used. Geroscience. 2023;46(1):795–816.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Miller RA, Harrison DE, Allison DB, Bogue M, Debarba L, Diaz V, et al. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight. 2020;5(21):e140019. https://doi.org/10.1172/jci.insight.140019.

  4. Snyder JM, Casey KM, Galecki A, Harrison DE, Jayarathne H, Kumar N, et al. Canagliflozin retards age-related lesions in heart, kidney, liver, and adrenal gland in genetically heterogenous male mice. Geroscience. 2022;45(1):385–97.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Strong R, Miller RA, Antebi A, Astle CM, Bogue M, Denzel MS, et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016;15(5):872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, et al. Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13(2):273–82.

    Article  CAS  PubMed  Google Scholar 

  7. Garratt M, Leander D, Pifer K, Bower B, Herrera JJ, Day SM, et al. 17-alpha estradiol ameliorates age-associated sarcopenia and improves late-life physical function in male mice but not in females or castrated males. Aging Cell. 2019;18(2):e12920.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Garratt M, Lagerborg KA, Tsai YM, Galecki A, Jain M, Miller RA. Male lifespan extension with 17-alpha estradiol is linked to a sex-specific metabolomic response modulated by gonadal hormones in mice. Aging Cell. 2018;11(4):e12786.

    Article  Google Scholar 

  9. Pascualini JR, Kincl FA. Biosythesis and metabolism of different hormones in the fetal and placental compartments Production, concentration and metabolism during pregnancy. Amsterdam: Pergamon; 1985. p. 73–172.

    Book  Google Scholar 

  10. Tanaka T, Suguro N, Kubodera A. Specific antisera for the radioimmunoassay of estriol 3-sulfate. Steroids. 1984;43(3):235–42.

    Article  CAS  PubMed  Google Scholar 

  11. Burcham PC. Carbonyl scavengers as pharmacotherapies in degenerative disease: hydralazine repurposing and challenges in clinical translation. Biochem Pharmacol. 2018;154:397–406.

    Article  CAS  PubMed  Google Scholar 

  12. Dehghan E, Zhang Y, Saremi B, Yadavali S, Hakimi A, Dehghani M, et al. Hydralazine induces stress resistance and extends C. elegans lifespan by activating the NRF2/SKN-1 signalling pathway. Nat Commun. 2017;8(1):2223.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dehghan E, Goodarzi M, Saremi B, Lin R, Mirzaei H. Hydralazine targets cAMP-dependent protein kinase leading to sirtuin1/5 activation and lifespan extension in C. elegans. Nat Commun. 2019;10(1):4905.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rolfe DF, Brand MD. Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol. 1996;271(4 Pt 1):C1380–9.

    Article  CAS  PubMed  Google Scholar 

  15. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009;47(4):333–43.

    Article  CAS  PubMed  Google Scholar 

  16. Tainter ML, Cutting WC, Stockton AB. Use of dinitrophenol in nutritional disorders: a critical survey of clinical results. Am J Public Health Nations Health. 1934;24(10):1045–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. da Caldeira Silva CC, Cerqueira FM, Barbosa LF, Medeiros MH, Kowaltowski AJ. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell. 2008;7(4):552–60.

    Article  Google Scholar 

  18. Miller RA, Li X, Garcia G. Aging rate indicators: speedometers for aging research in mice. Aging Biol. 2023;1(1):20230003.

    Article  Google Scholar 

  19. Li X, McPherson M, Hager M, Lee M, Chang P, Miller RA. Four anti-aging drugs and calorie-restricted diet produce parallel effects in fat, brain, muscle, macrophages, and plasma of young mice. Geroscience. 2023;45(4):2495–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X, Frazier JA, Spahiu E, McPherson M, Miller RA. Muscle-dependent regulation of adipose tissue function in long-lived growth hormone-mutant mice. Aging (Albany NY). 2020;12(10):8766–89.

    Article  CAS  PubMed  Google Scholar 

  21. Gates AC, Bernal-Mizrachi C, Chinault SL, Feng C, Schneider JG, Coleman T, et al. Respiratory uncoupling in skeletal muscle delays death and diminishes age-related disease. Cell Metab. 2007;6(6):497–505.

    Article  CAS  PubMed  Google Scholar 

  22. Allen SA, Tomilov A, Cortopassi GA. Small molecules bind human mTOR protein and inhibit mTORC1 specifically. Biochem Pharmacol. 2018;155:298–304.

    Article  CAS  Google Scholar 

  23. Wang Y, Zhang F, Liu Y, Yin S, Pang X, Li Z, et al. Nebivolol alleviates aortic remodeling through eNOS upregulation and inhibition of oxidative stress in l-NAME-induced hypertensive rats. Clin Exp Hypertens. 2017;39(7):628–39.

    Article  CAS  PubMed  Google Scholar 

  24. Wu N, Ma YC, Gong XQ, Zhao PJ, Jia YJ, Zhao Q, et al. The metabolite alpha-ketobutyrate extends lifespan by promoting peroxisomal function in C. elegans. Nat Commun. 2023;14(1):240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burns AR, Wiedrick J, Feryn A, Maes M, Midha MK, Baxter DH, et al. Proteomic changes induced by longevity-promoting interventions in mice. Geroscience. 2023;46(2):1543–60.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Watanabe K, Wilmanski T, Baloni P, Robinson M, Garcia GG, Hoopmann MR, et al. Lifespan-extending interventions induce consistent patterns of fatty acid oxidation in mouse livers. Commun Biol. 2023;6(1):768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Elmansi AM, Miller RA. Coordinated transcriptional upregulation of oxidative metabolism proteins in long-lived endocrine mutant mice. Geroscience. 2023;45(5):2967–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. AsadiShahmirzadi A, Edgar D, Liao CY, Hsu YM, Lucanic M, AsadiShahmirzadi A, et al. Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice. Cell Metab. 2020;32(3):447-56 e6.

    Article  CAS  Google Scholar 

  29. Hine C, Kim HJ, Zhu Y, Harputlugil E, Longchamp A, Matos MS, et al. Hypothalamic-pituitary axis regulates hydrogen sulfide production. Cell Metab. 2017;25(6):1320-33 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell. 2015;160(1–2):132–44.

    Article  CAS  PubMed  Google Scholar 

  31. Miller DL, Roth MB. Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2007;104(51):20618–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92(2):791–896.

    Article  CAS  PubMed  Google Scholar 

  33. Ravindran S, Kurian GA. Effect of sodium thiosulfate postconditioning on ischemia-reperfusion injury induced mitochondrial dysfunction in rat heart. J Cardiovasc Transl Res. 2018;11(3):246–58.

    Article  PubMed  Google Scholar 

  34. Auriemma M, Carbone A, Di Liberato L, Cupaiolo A, Caponio C, De Simone C, et al. Treatment of cutaneous calciphylaxis with sodium thiosulfate: two case reports and a review of the literature. Am J Clin Dermatol. 2011;12(5):339–46.

    Article  PubMed  Google Scholar 

  35. Brock PR, Maibach R, Childs M, Rajput K, Roebuck D, Sullivan MJ, et al. Sodium thiosulfate for protection from cisplatin-induced hearing loss. N Engl J Med. 2018;378(25):2376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011;66(2):191–201.

    Article  PubMed  Google Scholar 

  37. Harrison DE, Strong R, Reifsnyder P, Kumar N, Fernandez E, Flurkey K, et al. 17-a-estradiol late in life extends lifespan in aging UM-HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex. Aging Cell. 2021;20(5):e13328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strong R, Miller RA, Cheng CJ, Nelson JF, Gelfond J, Allani SK, et al. Lifespan benefits for the combination of rapamycin plus acarbose and for captopril in genetically heterogeneous mice. Aging Cell. 2022;21(12):e13724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang C, Li Q, Redden DT, Weindruch R, Allison DB. Statistical methods for testing effects on “maximum lifespan.” Mech Ageing Dev. 2004;125(9):629–32.

    Article  PubMed  Google Scholar 

  40. Jayarathne HSM, Debarba LK, Jaboro JJ, Ginsburg BC, Miller RA, Sadagurski M. Neuroprotective effects of canagliflozin: lessons from aged genetically diverse UM-HET3 mice. Aging Cell. 2022;21(7):e13653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang E, Dinesh A, Jadhav S, Miller RA, Garcia GG. Canagliflozin shares common mTOR and MAPK signaling mechanisms with other lifespan extension treatments. Life Sci. 2023;328:121904.

    Article  CAS  PubMed  Google Scholar 

  42. Li X, McPherson M, Hager M, Lee M, Chang P, Miller RA. Four anti-aging drugs and calorie-restricted diet produce parallel effects in fat, brain, muscle, macrophages, and plasma of young mice. Geroscience. 2023;45(4):2495–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li X, Shi X, McPherson M, Hager M, Garcia GG, Miller RA. Cap-independent translation of GPLD1 enhances markers of brain health in long-lived mutant and drug-treated mice. Aging Cell. 2022;21(9):e13685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li X, McPherson M, Hager M, Fang Y, Bartke A, Miller RA. Transient early life growth hormone exposure permanently alters brain, muscle, liver, macrophage, and adipocyte status in long-lived Ames dwarf mice. FASEB J. 2022;36(7):e22394.

    Article  CAS  PubMed  Google Scholar 

  45. Mann SN, Hadad N, Nelson Holte M, Rothman AR, Sathiaseelan R, Ali Mondal S, et al. Health benefits attributed to 17alpha-estradiol, a lifespan-extending compound, are mediated through estrogen receptor alpha. eLife. 2020;9:e59616. https://doi.org/10.7554/eLife.59616.

Download references

Acknowledgements

We are grateful to Lindsey Burger, Micah Bush, Robert Dilg, Lori Roberts, and Jacob Sheets for animal husbandry at UM; Pamela Krason, Vicki Ingalls, Nelson Durgin, and Leonor Robidoux for expert animal care at TJL; Vanessa Calderon and Victoria DeLeon for expert assistance at UT; and technical assistance from Alexey Tomilov. We thank NIH representative Jennifer Fox for advice and collaboration.

Funding

This work was supported by NIH grants AG022308 (DEH), AG022303 (RAM), AG022307 and AG013319 (RS), and AG062817 (GAC).

Author information

Authors and Affiliations

Authors

Contributions

DEH, NR, RS, and RAM are the principal investigators at the three collaborating institutions and are responsible for project design, supervision of technical personnel, interpretation of results, and preparation of manuscript drafts. BCG and MLC ran the Pharmacology Core and helped with the manuscript. ABS, JFN, RK, CK, and SL advised on experimental design and interpretation and helped with the manuscript. PR supervised laboratory procedures and data collection at The Jackson Laboratory site and organized diet preparations for all three sites. EF supervised laboratory personnel and data collection at the UTHSCSA site. GM conducted the isoprostane analyses. MH coordinated sample preparation across the three sites. NK assisted in statistical analyses. GAC, ID, MG, JGG, and JRM proposed the drugs used in the C2020 study.

Corresponding author

Correspondence to Richard A. Miller.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

James R. Mitchell passed away during the course of this study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 501 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, R.A., Harrison, D.E., Cortopassi, G.A. et al. Lifespan effects in male UM-HET3 mice treated with sodium thiosulfate, 16-hydroxyestriol, and late-start canagliflozin. GeroScience (2024). https://doi.org/10.1007/s11357-024-01176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01176-2

Keywords

Navigation