Skip to main content
Log in

Distinguishing cosmological models through quantum signatures of primordial perturbations

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the evolution of various measures of quantumness of the curvature perturbation by integrating out the inaccessible entropic fluctuations in the multi-field models of inflation. In particular, we discuss the following measures of quantumness, namely purity, entanglement entropy and quantum discord. The models being considered in this work are ones that produce large scale curvature power spectra similar to those produced by single-field models of inflation. More specifically, we consider different multi-field models which generate nearly scale invariant and oscillatory curvature power spectrum and compare their quantum signatures in the perturbations with the corresponding single-field models. We find that, even though different models of inflation may produce the same observable power spectrum on large scales, they have distinct quantum signatures arising from the perturbation modes. This may allow for a way to distinguish between different models of inflation based on their quantum signatures. Intriguingly, this result generalizes to bouncing scenarios as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Baumann, D., McAllister, L.: Inflation and String Theory. Cambridge Monographs on Mathematical Physics. Cambridge University Press (2015). https://doi.org/10.1017/CBO9781316105733

  2. Yamaguchi, M.: Supergravity based inflation models: a review. Class. Quant. Grav. 28, 103001 (2011). https://doi.org/10.1088/0264-9381/28/10/103001. arXiv:1101.2488 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  3. Linde, A.D.: Particle Physics and Inflationary Cosmology, vol. 5 (1990)

  4. Lalak, Z., Langlois, D., Pokorski, S., Turzynski, K.: Curvature and isocurvature perturbations in two-field inflation. JCAP 0707, 014 (2007). https://doi.org/10.1088/1475-7516/2007/07/014. arXiv:0704.0212 [hep-th]

    Article  ADS  Google Scholar 

  5. Langlois, D.: Cosmological perturbations from multi-field inflation. J. Phys. Conf. Ser. 140, 012004 (2008). https://doi.org/10.1088/1742-6596/140/1/012004. arXiv:0809.2540 [astro-ph]

    Article  Google Scholar 

  6. Peterson, C.M., Tegmark, M.: Testing two-field inflation. Phys. Rev. D 83, 023522 (2011). https://doi.org/10.1103/PhysRevD.83.023522. arXiv:1005.4056 [astro-ph.CO]

    Article  ADS  Google Scholar 

  7. Kawai, S., Kim, J.: Testing supersymmetric Higgs inflation with non-Gaussianity. Phys. Rev. D 91(4), 045021 (2015). https://doi.org/10.1103/PhysRevD.91.045021. arXiv:1411.5188 [hep-ph]

    Article  ADS  Google Scholar 

  8. Gao, X., Gong, J.-O.: Towards general patterns of features in multi-field inflation. JHEP 08, 115 (2015). https://doi.org/10.1007/JHEP08(2015)115. arXiv:1506.08894 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  9. Braglia, M., Hazra, D.K., Finelli, F., Smoot, G.F., Sriramkumar, L., Starobinsky, A.A.: Generating PBHs and small-scale GWs in two-field models of inflation. JCAP 08, 001 (2020). https://doi.org/10.1088/1475-7516/2020/08/001. arXiv:2005.02895 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  10. Braglia, M., Hazra, D.K., Sriramkumar, L., Finelli, F.: Generating primordial features at large scales in two field models of inflation. JCAP 08, 025 (2020). https://doi.org/10.1088/1475-7516/2020/08/025. arXiv:2004.00672 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  11. Palma, G.A., Sypsas, S., Zenteno, C.: Seeding primordial black holes in multifield inflation. Phys. Rev. Lett. 125(12), 121301 (2020). https://doi.org/10.1103/PhysRevLett.125.121301. arXiv:2004.06106 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  12. Ade, P.A.R., et al.: Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 594, 20 (2016). https://doi.org/10.1051/0004-6361/201525898. arXiv:1502.02114 [astro-ph.CO]

    Article  Google Scholar 

  13. Albrecht, A., Ferreira, P., Joyce, M., Prokopec, T.: Inflation and squeezed quantum states. Phys. Rev. D 50, 4807–4820 (1994). https://doi.org/10.1103/PhysRevD.50.4807. arXiv:astro-ph/9303001 [astro-ph]

    Article  ADS  Google Scholar 

  14. Polarski, D., Starobinsky, A.A.: Semiclassicality and decoherence of cosmological perturbations. Class. Quant. Grav. 13, 377–392 (1996). https://doi.org/10.1088/0264-9381/13/3/006. arXiv:gr-qc/9504030 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  15. Kiefer, C., Polarski, D., Starobinsky, A.A.: Quantum to classical transition for fluctuations in the early universe. Int. J. Mod. Phys. D 7, 455–462 (1998). https://doi.org/10.1142/S0218271898000292. arXiv:gr-qc/9802003 [gr-qc]

    Article  ADS  Google Scholar 

  16. Kiefer, C., Polarski, D.: Emergence of classicality for primordial fluctuations: concepts and analogies. Ann. Phys. 7, 137–158 (1998). https://doi.org/10.1002/andp.2090070302. arXiv:gr-qc/9805014

    Article  Google Scholar 

  17. Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A.: Pointer states for primordial fluctuations in inflationary cosmology. Class. Quant. Grav. 24, 1699–1718 (2007). https://doi.org/10.1088/0264-9381/24/7/002. arXiv:astro-ph/0610700 [astro-ph]

    Article  ADS  MathSciNet  Google Scholar 

  18. Martin, J.: Inflationary perturbations: the cosmological Schwinger effect. Lect. Notes Phys. 738, 193–241 (2008). https://doi.org/10.1007/978-3-540-74353-8_6. arXiv:0704.3540 [hep-th]

    Article  ADS  Google Scholar 

  19. Kiefer, C., Polarski, D.: Why do cosmological perturbations look classical to us? Adv. Sci. Lett. 2, 164–173 (2009). https://doi.org/10.1166/asl.2009.1023. arXiv:0810.0087 [astro-ph]

    Article  Google Scholar 

  20. Martin, J., Vennin, V., Peter, P.: Cosmological inflation and the quantum measurement problem. Phys. Rev. D 86, 103524 (2012). https://doi.org/10.1103/PhysRevD.86.103524. arXiv:1207.2086 [hep-th]

    Article  ADS  Google Scholar 

  21. Martin, J.: The quantum state of inflationary perturbations. J. Phys. Conf. Ser. 405, 012004 (2012). https://doi.org/10.1088/1742-6596/405/1/012004. arXiv:1209.3092 [hep-th]

    Article  Google Scholar 

  22. Martin, J., Vennin, V.: Quantum discord of cosmic inflation: can we show that CMB anisotropies are of quantum-mechanical origin? Phys. Rev. D 93(2), 023505 (2016). https://doi.org/10.1103/PhysRevD.93.023505. arXiv:1510.04038 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  23. Rajeev, K., Mondal, V., Chakraborty, S.: No-boundary wave function, Wheeler–DeWitt equation, and path integral analysis of the bouncing quantum cosmology. Phys. Rev. D 103(10), 106008 (2021). https://doi.org/10.1103/PhysRevD.103.106008. arXiv:2101.02848 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  24. Rajeev, K., Mondal, V., Chakraborty, S.: Bouncing with shear: implications from quantum cosmology. JCAP 01(01), 008 (2022). https://doi.org/10.1088/1475-7516/2022/01/008. arXiv:2109.08696 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  25. Martin, J., Micheli, A., Vennin, V.: Discord and decoherence. JCAP 04(04), 051 (2022). https://doi.org/10.1088/1475-7516/2022/04/051. arXiv:2112.05037 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  26. Lim, E.A.: Quantum information of cosmological correlations. Phys. Rev. D 91(8), 083522 (2015). https://doi.org/10.1103/PhysRevD.91.083522. arXiv:1410.5508 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  27. Maldacena, J.: A model with cosmological Bell inequalities. Fortsch. Phys. 64, 10–23 (2016). https://doi.org/10.1002/prop.201500097. arXiv:1508.01082 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  28. Micheli, A., Peter, P.: Quantum cosmological gravitational waves? (2022) arXiv:2211.00182 [gr-qc]

  29. Achucarro, A., Gong, J.-O., Hardeman, S., Palma, G.A., Patil, S.P.: Features of heavy physics in the CMB power spectrum. JCAP 01, 030 (2011). https://doi.org/10.1088/1475-7516/2011/01/030. arXiv:1010.3693 [hep-ph]

    Article  ADS  Google Scholar 

  30. Chen, X., Namjoo, M.H.: Standard clock in primordial density perturbations and cosmic microwave background. Phys. Lett. B 739, 285–292 (2014). https://doi.org/10.1016/j.physletb.2014.11.002. arXiv:1404.1536 [astro-ph.CO]

    Article  ADS  Google Scholar 

  31. Khoury, J., Ovrut, B.A., Steinhardt, P.J., Turok, N.: The Ekpyrotic universe: colliding branes and the origin of the hot big bang. Phys. Rev. D 64, 123522 (2001). https://doi.org/10.1103/PhysRevD.64.123522. arXiv:hep-th/0103239

    Article  ADS  MathSciNet  Google Scholar 

  32. Lehners, J.-L., McFadden, P., Turok, N., Steinhardt, P.J.: Generating ekpyrotic curvature perturbations before the big bang. Phys. Rev. D 76, 103501 (2007). https://doi.org/10.1103/PhysRevD.76.103501. arXiv:hep-th/0702153

    Article  ADS  MathSciNet  Google Scholar 

  33. Khoury, J., Ovrut, B.A., Steinhardt, P.J., Turok, N.: Density perturbations in the ekpyrotic scenario. Phys. Rev. D 66, 046005 (2002). https://doi.org/10.1103/PhysRevD.66.046005. arXiv:hep-th/0109050

    Article  ADS  MathSciNet  Google Scholar 

  34. Li, M.: Note on the production of scale-invariant entropy perturbation in the Ekpyrotic universe. Phys. Lett. B 724, 192–197 (2013). https://doi.org/10.1016/j.physletb.2013.06.035. arXiv:1306.0191 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  35. Ijjas, A., Lehners, J.-L., Steinhardt, P.J.: General mechanism for producing scale-invariant perturbations and small non-Gaussianity in ekpyrotic models. Phys. Rev. D 89(12), 123520 (2014). https://doi.org/10.1103/PhysRevD.89.123520. arXiv:1404.1265 [astro-ph.CO]

    Article  ADS  Google Scholar 

  36. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 215, 203–333 (1992) https://doi.org/10.1016/0370-1573(92)90044-Z

  37. Prokopec, T., Rigopoulos, G.I.: Decoherence from isocurvature perturbations in inflation. JCAP 0711, 029 (2007). https://doi.org/10.1088/1475-7516/2007/11/029. arXiv:astro-ph/0612067 [astro-ph]

    Article  ADS  Google Scholar 

  38. Battarra, L., Lehners, J.-L.: Quantum-to-classical transition for ekpyrotic perturbations. Phys. Rev. D 89(6), 063516 (2014). https://doi.org/10.1103/PhysRevD.89.063516. arXiv:1309.2281 [hep-th]

    Article  ADS  Google Scholar 

  39. Raveendran, R.N., Parattu, K., Sriramkumar, L.: Enhanced power on small scales and evolution of quantum state of perturbations in single and two field inflationary models (2022) arXiv:2206.05760 [astro-ph.CO]

  40. Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.P.: Distribution functions in physics: fundamentals. Phys. Rep. 106, 121–167 (1984). https://doi.org/10.1016/0370-1573(84)90160-1

    Article  ADS  MathSciNet  Google Scholar 

  41. Case, W.B.: Wigner functions and weyl transforms for pedestrians. Am.. J. Phys. 76(10), 937–946 (2008)

    Article  ADS  Google Scholar 

  42. Martin, J.: Inflationary cosmological perturbations of quantum-mechanical origin. Lect. Notes Phys. 669, 199–244 (2005). https://doi.org/10.1007/11377306_7. arXiv:hep-th/0406011

    Article  ADS  Google Scholar 

  43. Serafini, A., Illuminati, F., De Siena, S.: Symplectic invariants, entropic measures and correlations of Gaussian states. J. Phys. B 37, 21 (2004). https://doi.org/10.1088/0953-4075/37/2/L02. arXiv:quant-ph/0307073

    Article  ADS  Google Scholar 

  44. Walschaers, M.: Non-Gaussian quantum states and where to find them. PRX Quantum 2(3), 030204 (2021). https://doi.org/10.1103/PRXQuantum.2.030204. arXiv:2104.12596 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  45. Paris, M.G.A., Illuminati, F., Serafini, A., Siena, S.D.: Purity of gaussian states: measurement schemes and time evolution in noisy channels. Phys. Rev. A 68(1) (2003) https://doi.org/10.1103/physreva.68.012314

  46. Adesso, G., Ragy, S., Lee, A.R.: Continuous variable quantum information: Gaussian states and beyond. Open Syst. Inf. Dyn. 21(01n02), 1440001 (2014) https://doi.org/10.1142/s1230161214400010

  47. Nelson, E.: Quantum Decoherence during inflation from gravitational nonlinearities. JCAP 03, 022 (2016). https://doi.org/10.1088/1475-7516/2016/03/022. arXiv:1601.03734 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  48. Gong, J.-O., Seo, M.-S.: Quantum non-linear evolution of inflationary tensor perturbations. JHEP 05, 021 (2019). https://doi.org/10.1007/JHEP05(2019)021. arXiv:1903.12295 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  49. Burgess, C.P., Holman, R., Kaplanek, G., Martin, J., Vennin, V.: Minimal decoherence from inflation (2022) arXiv:2211.11046 [hep-th]

  50. Prokopec, T.: Entropy of the squeezed vacuum. Class. Quant. Grav. 10, 2295–2306 (1993). https://doi.org/10.1088/0264-9381/10/11/012

    Article  ADS  Google Scholar 

  51. Adesso, G., Illuminati, F.: Entanglement in continuous variable systems: recent advances and current perspectives. J. Phys. A 40, 7821–7880 (2007). https://doi.org/10.1088/1751-8113/40/28/S01. arXiv:quant-ph/0701221

    Article  ADS  MathSciNet  Google Scholar 

  52. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  53. Katsinis, D., Pastras, G., Tetradis, N.: Entanglement of harmonic systems in squeezed states. JHEP 10, 039 (2023). https://doi.org/10.1007/JHEP10(2023)039. arXiv:2304.04241 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  54. Boutivas, K., Pastras, G., Tetradis, N.: Entanglement and expansion. JHEP 05, 199 (2023). https://doi.org/10.1007/JHEP05(2023)199. arXiv:2302.14666 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  55. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100(5), 050502 (2008). arXiv:0709.0548 [quant-ph]

    Article  ADS  Google Scholar 

  56. Pinol, L.: Multifield inflation beyond \(N_{{\rm field}}=2\): non-Gaussianities and single-field effective theory. JCAP 04, 002 (2021). https://doi.org/10.1088/1475-7516/2021/04/002. arXiv:2011.05930 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  57. Agullo, I., Bonga, B., Metidieri, P.R.: Does inflation squeeze cosmological perturbations? (2022) arXiv:2203.07066 [gr-qc]

  58. Renaux-Petel, S., Turzyński, K.: Geometrical destabilization of inflation. Phys. Rev. Lett. 117(14), 141301 (2016). https://doi.org/10.1103/PhysRevLett.117.141301. arXiv:1510.01281 [astro-ph.CO]

    Article  ADS  Google Scholar 

  59. Colas, T., Grain, J., Vennin, V.: Quantum recoherence in the early universe (2022) arXiv:2212.09486 [gr-qc]

  60. Fertig, A., Lehners, J.-L., Mallwitz, E., Wilson-Ewing, E.: Converting entropy to curvature perturbations after a cosmic bounce. JCAP 1610(10), 005 (2016). https://doi.org/10.1088/1475-7516/2016/10/005. arXiv:1607.05663 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  61. Raveendran, R.N., Sriramkumar, L.: Primordial features from ekpyrotic bounces. Phys. Rev. D 99(4), 043527 (2019). https://doi.org/10.1103/PhysRevD.99.043527. arXiv:1809.03229 [astro-ph.CO]

    Article  ADS  Google Scholar 

  62. Martin, J.e., Vennin, V.: Real-space entanglement in the Cosmic Microwave Background. JCAP 10, 036 (2021) https://doi.org/10.1088/1475-7516/2021/10/036arXiv:2106.15100 [gr-qc]

Download references

Acknowledgements

The authors wish to thank Krishnamohan Parattu and L. Sriramkumar for interesting discussions. RNR is supported by post-doctoral fellowship from the Indian Association for the Cultivation of Science, Kolkata, India. Research of SC is funded by the INSPIRE Faculty fellowship from DST, Government of India (Reg. No. DST/INSPIRE/04/2018/000893).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work

Corresponding author

Correspondence to Rathul Nath Raveendran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

A Evolution in the Heisenberg picture

In the main text, we have discussed the evolution of the primordial perturbations in the Schrödinger picture. Here we show how the evolution can be obtained in the Heisenberg picture as well, by promoting the fields to operators. In terms of creation and annihilation operators, the operators associated with the Mukhanov–Sasaki variables and the conjugate momenta can be written as,

$$\begin{aligned} {\hat{v}}_m&=\sum _{n}\left( f_{m n } {\hat{a}}_n + f_{m n}^* {\hat{a}}_n^\dagger \right) \equiv \varvec{F}^{\textrm{T}} \, \hat{\varvec{A}} + \varvec{F}^{\mathrm{T*}} \hat{\varvec{A}}^\dagger ~, \end{aligned}$$
(45a)
$$\begin{aligned} {\hat{p}}_m&=\sum _{n}\left( \pi _{nm} {\hat{a}}_n + \pi _{nm}^* {\hat{a}}_n^\dagger \right) \equiv \varvec{\Pi }^{\textrm{T}} \, \hat{\varvec{A}} + \varvec{\Pi }^{\mathrm{T*}} \hat{\varvec{A}}^\dagger ~, \end{aligned}$$
(45b)

where, the elements of the matrices \(\varvec{F}\) and \(\varvec{\Pi }\) are the mode functions associated with the respective operators. From the Heisenberg equations of motion, one can see that the mode functions, \(\varvec{F}\) and \(\varvec{\Pi }\) obey the classical equations as

$$\begin{aligned} \varvec{F}'&= \varvec{\Pi } + \varvec{A}\,\varvec{F}~, \end{aligned}$$
(46a)
$$\begin{aligned} \varvec{\Pi }'&= -\varvec{\Pi }\,\varvec{A} -2\,\varvec{F}\,\varvec{B}~. \end{aligned}$$
(46b)

From the commutation relations between the creation and annihilation operators,

$$\begin{aligned} \left[ {\hat{a}}_m,{\hat{a}}_n\right] =\delta _{mn}~, \end{aligned}$$
(47)

we can obtain the Wronskian associated with the mode functions as

$$\begin{aligned} \varvec{F}\varvec{\Pi }^\dag - \varvec{\Pi } \varvec{F}^\dag =i\, \varvec{I}~. \end{aligned}$$
(48)

Therefore, the two-point correlation functions associated with the above fields can be expressed in terms of the mode functions as,

$$\begin{aligned} \left\langle {\hat{v}}_{m}{\hat{v}}_{n}\right\rangle =&\varvec{F}^\dag \varvec{F}~, \end{aligned}$$
(49a)
$$\begin{aligned} \left\langle {\hat{p}}_{m}{\hat{p}}_{n}\right\rangle =&\varvec{\Pi }^\dag \varvec{\Pi }~, \end{aligned}$$
(49b)
$$\begin{aligned} \left\langle {\hat{v}}_{m}{\hat{p}}_{n}+{\hat{p}}_{n}{\hat{v}}_{m}\right\rangle =&\varvec{F}^\dag \varvec{\Pi }+\left( \varvec{F}^\dag \varvec{\Pi }\right) ^*~. \end{aligned}$$
(49c)

In the Heisenberg formalism, one can solve the equations of motion provided in Eq. (46) and obtain the correlation functions using Eq. (49). Recall that, in the Schrödinger formalism, one also solves for the matrix \(\varvec{\Omega }\), appearing in the Schrödinger wave function, using Eq. (6) and obtain the correlation function from Eq. (9). The situation in the Heisenberg picture can be obtained by identifying the relation between \(\varvec{\Omega }\) and the mode functions defined in Eq. (45). In other words, this is done by using Eq. (7) to identify \(\Omega \) as

$$\begin{aligned} i\,\varvec{\Omega }=\left( \varvec{F}^{-1}\, \varvec{\Pi }\right) ^*~, \qquad \textrm{or}\qquad i\, \varvec{\Omega }=\varvec{F}^{-1} \, \varvec{\Pi }~. \end{aligned}$$
(50)

This provides the connection between the evolution in the Schrödinger and the Heisenberg picture.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raveendran, R.N., Chakraborty, S. Distinguishing cosmological models through quantum signatures of primordial perturbations. Gen Relativ Gravit 56, 55 (2024). https://doi.org/10.1007/s10714-024-03242-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03242-8

Keywords

Navigation