Skip to main content

Advertisement

Log in

Development and validation of [18 F]-PSMA-1007 PET-based radiomics model to predict biochemical recurrence-free survival following radical prostatectomy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

A Correction to this article was published on 24 May 2024

This article has been updated

Abstract

Purpose

Biochemical recurrence (BCR) following radical prostatectomy (RP) is a significant concern for patients with prostate cancer. Reliable prediction models are needed to identify patients at risk for BCR and facilitate appropriate management. This study aimed to develop and validate a clinical-radiomics model based on preoperative [18 F]PSMA-1007 PET for predicting BCR-free survival (BRFS) in patients who underwent RP for prostate cancer.

Materials and methods

A total of 236 patients with histologically confirmed prostate cancer who underwent RP were retrospectively analyzed. All patients had a preoperative [18 F]PSMA-1007 PET/CT scan. Radiomics features were extracted from the primary tumor region on PET images. A radiomics signature was developed using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The performance of the radiomics signature in predicting BRFS was assessed using Harrell’s concordance index (C-index). The clinical-radiomics nomogram was constructed using the radiomics signature and clinical features. The model was externally validated in an independent cohort of 98 patients.

Results

The radiomics signature comprised three features and demonstrated a C-index of 0.76 (95% CI: 0.60–0.91) in the training cohort and 0.71 (95% CI: 0.63–0.79) in the validation cohort. The radiomics signature remained an independent predictor of BRFS in multivariable analysis (HR: 2.48, 95% CI: 1.47–4.17, p < 0.001). The clinical-radiomics nomogram significantly improved the prediction performance (C-index: 0.81, 95% CI: 0.66–0.95, p = 0.007) in the training cohort and (C-index: 0.78 95% CI: 0.63–0.89, p < 0.001) in the validation cohort.

Conclusion

We developed and validated a novel [18 F]PSMA-1007 PET-based clinical-radiomics model that can predict BRFS following RP in prostate cancer patients. This model may be useful in identifying patients with a higher risk of BCR, thus enabling personalized risk stratification and tailored management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  CAS  PubMed  Google Scholar 

  2. Shao N, Wang Y, Jiang WY, Qiao D, Zhang SG, Wu Y, et al. Immunotherapy and endothelin receptor antagonists for treatment of castration-resistant prostate cancer. Int J Cancer. 2013;133:1743–50. https://doi.org/10.1002/ijc.28162.

    Article  CAS  PubMed  Google Scholar 

  3. Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, et al. EAU-ESTRO-SIOG guidelines on prostate Cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate Cancer. Eur Urol. 2017;71:630–42. https://doi.org/10.1016/j.eururo.2016.08.002.

    Article  PubMed  Google Scholar 

  4. Rodrigues G, Warde P, Pickles T, Crook J, Brundage M, Souhami L, et al. Pre-treatment risk stratification of prostate cancer patients: a critical review. Can Urol Assoc J. 2012;6:121–7. https://doi.org/10.5489/cuaj.11085.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mesko S, Marks L, Ragab O, Patel S, Margolis DA, Demanes DJ, et al. Targeted prostate biopsy gleason score heterogeneity and implications for risk stratification. Am J Clin Oncol. 2018;41:497–501. https://doi.org/10.1097/COC.0000000000000308.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kasperzyk JL, Finn SP, Flavin R, Fiorentino M, Lis R, Hendrickson WK, et al. Prostate-specific membrane antigen protein expression in tumor tissue and risk of lethal prostate cancer. Cancer Epidemiol Biomarkers Prev. 2013;22:2354–63. https://doi.org/10.1158/1055-9965.EPI-13-0668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones W, Griffiths K, Barata PC, Paller CJ. PSMA Theranostics: review of the current status of PSMA-Targeted imaging and Radioligand Therapy. Cancers (Basel). 2020;12. https://doi.org/10.3390/cancers12061367.

  8. Mokoala K, Lawal I, Lengana T, Kgatle M, Giesel FL, Vorster M, et al. PSMA Theranostics: Sci Pract Cancers (Basel). 2021;13. https://doi.org/10.3390/cancers13153904.

  9. Fendler WP, Calais J, Allen-Auerbach M, Bluemel C, Eberhardt N, Emmett L, et al. (68)Ga-PSMA-11 PET/CT interobserver agreement for prostate Cancer assessments: an International Multicenter prospective study. Journal of nuclear medicine: official publication. Soc Nuclear Med. 2017;58:1617–23. https://doi.org/10.2967/jnumed.117.190827.

    Article  CAS  Google Scholar 

  10. Duan H, Baratto L, Hatami N, Liang T, Mari Aparici C, Davidzon GA, et al. 68Ga-PSMA11 PET/CT for biochemically recurrent prostate cancer: influence of dual-time and PMT- vs SiPM-based detectors. Translational Oncol. 2022;15:101293. https://doi.org/10.1016/j.tranon.2021.101293.

    Article  CAS  Google Scholar 

  11. Mattiolli AB, Santos A, Vicente A, Queiroz M, Bastos D, Herchenhorn D, et al. Impact of 68GA-PSMA PET / CT on treatment of patients with recurrent / metastatic high risk prostate cancer - a multicenter study. Int Braz J Urol. 2018;44:892–9. https://doi.org/10.1590/S1677-5538.IBJU.2017.0632.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dekalo S, Kuten J, Mintz I, Fahoum I, Gitstein G, Keizman D, et al. Preoperative 68Ga-PSMA PET/CT defines a subgroup of high-risk prostate cancer patients with favorable outcomes after radical prostatectomy and lymph node dissection. Prostate Cancer Prostatic Dis. 2021;24:910–6. https://doi.org/10.1038/s41391-021-00347-y.

    Article  CAS  PubMed  Google Scholar 

  13. Draulans C, De Roover R, van der Heide UA, Kerkmeijer L, Smeenk RJ, Pos F, et al. Optimal (68)Ga-PSMA and (18)F-PSMA PET window levelling for gross tumour volume delineation in primary prostate cancer. Eur J Nucl Med Mol Imaging. 2021;48:1211–8. https://doi.org/10.1007/s00259-020-05059-4.

    Article  PubMed  Google Scholar 

  14. Hong JJ, Liu BL, Wang ZQ, Tang K, Ji XW, Yin WW, et al. The value of (18)F-PSMA-1007 PET/CT in identifying non-metastatic high-risk prostate cancer. EJNMMI Res. 2020;10:138. https://doi.org/10.1186/s13550-020-00730-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giesel FL, Knorr K, Spohn F, Will L, Maurer T, Flechsig P, et al. Detection efficacy of (18)F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate Cancer after Radical Prostatectomy. Journal of nuclear medicine: official publication. Soc Nuclear Med. 2019;60:362–8. https://doi.org/10.2967/jnumed.118.212233.

    Article  CAS  Google Scholar 

  16. Zhou X, Jiang X, Liu L, Wang X, Li C, Yao Y, et al. Evaluation of (18)F-PSMA-1007 PET/CT in prostate cancer patients with biochemical recurrence after radical prostatectomy. Transl Oncol. 2022;15:101292. https://doi.org/10.1016/j.tranon.2021.101292.

    Article  CAS  PubMed  Google Scholar 

  17. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62. https://doi.org/10.1038/nrclinonc.2017.141.

    Article  PubMed  Google Scholar 

  18. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77. https://doi.org/10.1148/radiol.2015151169.

    Article  PubMed  Google Scholar 

  19. Xue XQ, Yu WJ, Shi X, Shao XL, Wang YT. (18)F-FDG PET/CT-based radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Front Oncol. 2022;12:911168. https://doi.org/10.3389/fonc.2022.911168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang L, Li T, Hong J, Zhang M, Ouyang M, Zheng X, et al. (18)F-FDG PET-based radiomics model for predicting occult lymph node metastasis in clinical N0 solid lung adenocarcinoma. Quant Imaging Med Surg. 2021;11:215–25. https://doi.org/10.21037/qims-20-337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xue B, Wu S, Zhang M, Hong J, Liu B, Xu N, et al. A radiomic-based model of different contrast-enhanced CT phase for differentiate intrahepatic cholangiocarcinoma from inflammatory mass with hepatolithiasis. Abdom Radiol (NY). 2021;46:3835–44. https://doi.org/10.1007/s00261-021-03027-6.

    Article  PubMed  Google Scholar 

  22. Cardinale J, Martin R, Remde Y, Schafer M, Hienzsch A, Hubner S, et al. Procedures for the GMP-Compliant production and Quality Control of [(18)F]PSMA-1007: a Next Generation Radiofluorinated Tracer for the detection of prostate Cancer. Pharmaceuticals (Basel). 2017;10. https://doi.org/10.3390/ph10040077.

  23. Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate Cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79:243–62. https://doi.org/10.1016/j.eururo.2020.09.042.

    Article  CAS  PubMed  Google Scholar 

  24. Mazzone E, Gandaglia G, Ploussard G, Marra G, Valerio M, Campi R, et al. Risk stratification of patients candidate to Radical Prostatectomy based on clinical and multiparametric magnetic resonance imaging parameters: Development and External Validation of Novel Risk groups. Eur Urol. 2022;81:193–203. https://doi.org/10.1016/j.eururo.2021.07.027.

    Article  CAS  PubMed  Google Scholar 

  25. Roberts MJ, Morton A, Papa N, Franklin A, Raveenthiran S, Yaxley WJ, et al. Primary tumour PSMA intensity is an independent prognostic biomarker for biochemical recurrence-free survival following radical prostatectomy. Eur J Nucl Med Mol Imaging. 2022;49:3289–94. https://doi.org/10.1007/s00259-022-05756-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P et al. Radiomics: extracting more information from medical images using advanced feature analysis. European journal of cancer (Oxford, England: 1990). 2012;48:441-6. https://doi.org/10.1016/j.ejca.2011.11.036.

  27. Jia TY, Xiong JF, Li XY, Yu W, Xu ZY, Cai XW, et al. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. Eur Radiol. 2019;29:4742–50. https://doi.org/10.1007/s00330-019-06024-y.

    Article  PubMed  Google Scholar 

  28. Thawani R, McLane M, Beig N, Ghose S, Prasanna P, Velcheti V, et al. Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer. 2018;115:34–41. https://doi.org/10.1016/j.lungcan.2017.10.015.

    Article  PubMed  Google Scholar 

  29. Lee G, Lee HY, Park H, Schiebler ML, van Beek EJR, Ohno Y, et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art. Eur J Radiol. 2017;86:297–307. https://doi.org/10.1016/j.ejrad.2016.09.005.

    Article  PubMed  Google Scholar 

  30. Feng ST, Jia Y, Liao B, Huang B, Zhou Q, Li X, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI. Eur Radiol. 2019;29:4648–59. https://doi.org/10.1007/s00330-018-5935-8.

    Article  PubMed  Google Scholar 

  31. Li H, Mendel KR, Lan L, Sheth D, Giger ML. Digital mammography in breast Cancer: Additive Value of Radiomics of breast parenchyma. Radiology. 2019;291:15–20. https://doi.org/10.1148/radiol.2019181113.

    Article  PubMed  Google Scholar 

  32. Zang S, Ai S, Yang R, Zhang P, Wu W, Zhao Z, et al. Development and validation of (68)Ga-PSMA-11 PET/CT-based radiomics model to detect primary prostate cancer. EJNMMI Res. 2022;12:63. https://doi.org/10.1186/s13550-022-00936-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Spohn SKB, Schmidt-Hegemann NS, Ruf J, Mix M, Benndorf M, Bamberg F, et al. Development of PSMA-PET-guided CT-based radiomics signature to predict biochemical recurrence after salvage radiotherapy. Eur J Nucl Med Mol Imaging. 2023. https://doi.org/10.1007/s00259-023-06195-3.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen A, Lu L, Pu X, Yu T, Yang H, Schwartz LH, et al. CT-Based Radiomics Model for Predicting Brain Metastasis in Category T1 lung adenocarcinoma. AJR Am J Roentgenol. 2019;213:134–9. https://doi.org/10.2214/AJR.18.20591.

    Article  PubMed  Google Scholar 

  35. Ji GW, Zhu FP, Zhang YD, Liu XS, Wu FY, Wang K, et al. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma. Eur Radiol. 2019;29:3725–35. https://doi.org/10.1007/s00330-019-06142-7.

    Article  PubMed  Google Scholar 

  36. Tan Y, Zhang ST, Wei JW, Dong D, Wang XC, Yang GQ, et al. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery. Eur Radiol. 2019;29:3325–37. https://doi.org/10.1007/s00330-019-06056-4.

    Article  PubMed  Google Scholar 

  37. Zhang R, Xu L, Wen X, Zhang J, Yang P, Zhang L, et al. A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Quant Imaging Med Surg. 2019;9:1503–15. https://doi.org/10.21037/qims.2019.09.07.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tsurumaki Sato Y, Fukuhara H, Suzuki M, Fujimura T, Nakagawa T, Nishimatsu H, et al. Long-term results of radical prostatectomy with immediate adjuvant androgen deprivation therapy for pT3N0 prostate cancer. BMC Urol. 2014;14:13. https://doi.org/10.1186/1471-2490-14-13.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Tiancheng Li: data acquisition, literature research, and manuscript writing. Mimi Xu, Yinuo Liu, Guolin Wang and Kaifeng Liu: data acquisition and review, Shuye Yang, Kui Zhao and Xinhui Su: study design and theoretical support. Tiancheng Li and Xinhui Su: design of the research program, review and revision of the manuscript. All the authors agreed on the content of the final manuscript.

Corresponding author

Correspondence to Xinhui Su.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the First Affiliated Hospital, College of Medicine, Zhejiang University.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The authors regret that the version of Figure 7 that appears in the published original article is incorrect. Both the correct and incorrect Figure 7 are provided in the erratum article.

The original article has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Xu, M., Yang, S. et al. Development and validation of [18 F]-PSMA-1007 PET-based radiomics model to predict biochemical recurrence-free survival following radical prostatectomy. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00259-024-06734-6

Keywords

Navigation