Skip to main content

Advertisement

Log in

The Influence of Exercise on Cancer Risk, the Tumor Microenvironment and the Treatment of Cancer

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

There are several modifiable factors that can be targeted to prevent and manage the occurrence and progression of cancer, and maintaining adequate exercise is a crucial one. Regular physical exercise has been shown to be a beneficial strategy in preventing cancer, potentially amplifying the effectiveness of established cancer therapies, alleviating certain cancer-related symptoms, and possibly mitigating side effects resulting from treatment. Nevertheless, the exact mechanisms by which exercise affects tumors, especially its impact on the tumor microenvironment (TME), remain uncertain. This review aims to present an overview of the beneficial effects of exercise in the context of cancer management, followed by a summary of the exercise parameters, especially exercise intensity, that need to be considered when prescribing exercise for cancer patients. Finally, we discuss the influence of exercise on the TME, including its effects on crucial immune cells (e.g., T cells, macrophages, neutrophils, natural killer cells, myeloid-derived suppressor cells, B cells), intratumor angiogenesis, and cancer metabolism. This comprehensive review provides up-to-date scientific evidence on the effects of exercise training on cancer and offers guidance to clinicians for the development of safe and feasible exercise training programs for cancer patients in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet (Lond Engl). 2005;366:1784–93.

    Article  Google Scholar 

  3. Courneya KS. Exercise in cancer survivors: an overview of research. Med Sci Sports Exerc. 2003;35:1846–52.

    Article  PubMed  Google Scholar 

  4. Matthews CE, Moore SC, Arem H, Cook MB, Trabert B, Håkansson N, Larsson SC, Wolk A, Gapstur SM, Lynch BM, Milne RL, Freedman ND, Huang WY, Berrington de Gonzalez A, Kitahara CM, Linet MS, Shiroma EJ, Sandin S, Patel AV, Lee IM. Amount and intensity of leisure-time physical activity and lower cancer risk. J Clin Oncol Off J Am Soc Clin Oncol. 2020;38:686–97.

    Article  Google Scholar 

  5. Moore SC, Lee IM, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, Keadle SK, Arem H, Berrington de Gonzalez A, Hartge P, Adami HO, Blair CK, Borch KB, Boyd E, Check DP, Fournier A, Freedman ND, Gunter M, Johannson M, Khaw KT, Linet MS, Orsini N, Park Y, Riboli E, Robien K, Schairer C, Sesso H, Spriggs M, Van Dusen R, Wolk A, Matthews CE, Patel AV. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 2016;176:816–25.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abioye AI, Odesanya MO, Abioye AI, Ibrahim NA. Physical activity and risk of gastric cancer: a meta-analysis of observational studies. Br J Sports Med. 2015;49:224–9.

    Article  PubMed  Google Scholar 

  7. Lope V, Martín M, Castelló A, Casla S, Ruiz A, Baena-Cañada JM, Casas AM, Calvo L, Bermejo B, Muñoz M, Ramos M, de Juan-Ferré A, Jara C, Antón A, Jimeno M, Lluch A, Antolín S, García-Sáenz J, Estévez P, Arriola-Arellano E, Gavilá J, Pérez-Gómez B, Carrasco E, Pollán M. Physical activity and breast cancer risk by pathological subtype. Gynecol Oncol. 2017;144:577–85.

    Article  PubMed  Google Scholar 

  8. Li Y, Xiao X, Zhang Y, Tang W, Zhong D, Liu T, Zhu Y, Li J, Jin R. Effect of exercise on breast cancer: a systematic review and meta-analysis of animal experiments. Front Mol Biosci. 2022;9: 843810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Behrens G, Jochem C, Schmid D, Keimling M, Ricci C, Leitzmann MF. Physical activity and risk of pancreatic cancer: a systematic review and meta-analysis. Eur J Epidemiol. 2015;30:279–98.

    Article  PubMed  Google Scholar 

  10. Brenner DR, Yannitsos DH, Farris MS, Johansson M, Friedenreich CM. Leisure-time physical activity and lung cancer risk: a systematic review and meta-analysis. Lung Cancer (Amsterdam, Netherlands). 2016;95:17–27.

    Article  PubMed  Google Scholar 

  11. Liu Y, Hu F, Li D, Wang F, Zhu L, Chen W, Ge J, An R, Zhao Y. Does physical activity reduce the risk of prostate cancer? A systematic review and meta-analysis. Eur Urol. 2011;60:1029–44.

    Article  PubMed  Google Scholar 

  12. Ashcraft KA, Warner AB, Jones LW, Dewhirst MW. Exercise as adjunct therapy in cancer. Semin Radiat Oncol. 2019;29:16–24.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim R. Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence. J Transl Med. 2018;16:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao T, Fang F, Wang H, Lv C, Han M, Zhang Z, Wang F, Li B, Ling C. Effect of aerobic exercise on serum metabolites in mice with hepatocellular carcinoma after surgery. Med Sci Monitor Int Med J Exp Clin Res. 2019;25:3181–9.

    CAS  Google Scholar 

  15. Dufresne S, Guéritat J, Chiavassa S, Noblet C, Assi M, Rioux-Leclercq N, Rannou-Bekono F, Lefeuvre-Orfila L, Paris F, Rébillard A. Exercise training improves radiotherapy efficiency in a murine model of prostate cancer. FASEB J Off Publ Feder Am Soc Exp Biol. 2020;34:4984–96.

    CAS  Google Scholar 

  16. Hojan K, Kwiatkowska-Borowczyk E, Leporowska E, Górecki M, Ozga-Majchrzak O, Milecki T, Milecki P. Physical exercise for functional capacity, blood immune function, fatigue, and quality of life in high-risk prostate cancer patients during radiotherapy: a prospective, randomized clinical study. Eur J Phys Rehabil Med. 2016;52:489–501.

    PubMed  Google Scholar 

  17. Dufresne S, Richard C, Dieumegard A, Orfila L, Delpon G, Chiavassa S, Martin B, Rouvière L, Escoffre JM, Oujagir E, Denis de Senneville B, Bouakaz A, Rioux-Leclercq N, Potiron V, Rébillard A. Voluntary wheel running does not enhance radiotherapy efficiency in a preclinical model of prostate cancer: the importance of physical activity modalities? Cancers. 2021;13:5402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jain RK. Determinants of tumor blood flow: a review. Can Res. 1988;48:2641–58.

    CAS  Google Scholar 

  19. Schadler KL, Thomas NJ, Galie PA, Bhang DH, Roby KC, Addai P, Till JE, Sturgeon K, Zaslavsky A, Chen CS, Ryeom S. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget. 2016;7:65429–40.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Morrell MBG, Alvarez-Florez C, Zhang A, Kleinerman ES, Savage H, Marmonti E, Park M, Shaw A, Schadler KL. Vascular modulation through exercise improves chemotherapy efficacy in Ewing sarcoma. Pediatr Blood Cancer. 2019;66: e27835.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Betof AS, Lascola CD, Weitzel D, Landon C, Scarbrough PM, Devi GR, Palmer G, Jones LW, Dewhirst MW. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J Natl Cancer Inst. 2015. https://doi.org/10.1093/jnci/djv040.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alves de Lima E Jr, Teixeira AAS, Biondo LA, Diniz TA, Silveira LS, Coletti D, Busquets Rius S, Rosa Neto JC. Exercise reduces the resumption of tumor growth and proteolytic pathways in the skeletal muscle of mice following chemotherapy. Cancers. 2020;12:3466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teicher BA. Tumor models for efficacy determination. Mol Cancer Ther. 2006;5:2435–43.

    Article  CAS  PubMed  Google Scholar 

  24. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F, Leblanc P, Munn LL, Huang P, Duda DG, Fukumura D, Jain RK, Poznansky MC. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA. 2012;109:17561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gomes-Santos IL, Amoozgar Z, Kumar AS, Ho WW, Roh K, Talele NP, Curtis H, Kawaguchi K, Jain RK, Fukumura D. Exercise training improves tumor control by increasing CD8(+) T-cell infiltration via CXCR3 signaling and sensitizes breast cancer to immune checkpoint blockade. Cancer Immunol Res. 2021;9:765–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurz E, Hirsch CA, Dalton T, Shadaloey SA, Khodadadi-Jamayran A, Miller G, Pareek S, Rajaei H, Mohindroo C, Baydogan S, Ngo-Huang A, Parker N, Katz MHG, Petzel M, Vucic E, McAllister F, Schadler K, Winograd R, Bar-Sagi D. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer. Cancer Cell. 2022;40:720-737.e725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martín-Ruiz A, Fiuza-Luces C, Rincón-Castanedo C, Fernández-Moreno D, Gálvez BG, Martínez-Martínez E, Martín-Acosta P, Coronado MJ, Franco-Luzón L, González-Murillo Á, Ramírez M, Provencio M, Lucia A. Benefits of exercise and immunotherapy in a murine model of human non-small-cell lung carcinoma. Exerc Immunol Rev. 2020;26:100–15.

    PubMed  Google Scholar 

  28. Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR. Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol. 2009;10:598–605.

    Article  PubMed  Google Scholar 

  29. Galvão DA, Newton RU. Review of exercise intervention studies in cancer patients. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:899–909.

    Article  Google Scholar 

  30. Hwang CL, Yu CJ, Shih JY, Yang PC, Wu YT. Effects of exercise training on exercise capacity in patients with non-small cell lung cancer receiving targeted therapy. Support Care Cancer Off J Multinatl Assoc Support Care Cancer. 2012;20:3169–77.

    Google Scholar 

  31. Baguley BJ, Bolam KA, Wright ORL, Skinner TL. The effect of nutrition therapy and exercise on cancer-related fatigue and quality of life in men with prostate cancer: a systematic review. Nutrients. 2017;9:1003.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ahles TA, Root JC, Ryan EL. Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:3675–86.

    Article  CAS  Google Scholar 

  33. Chen HM, Tsai CM, Wu YC, Lin KC, Lin CC. Randomised controlled trial on the effectiveness of home-based walking exercise on anxiety, depression and cancer-related symptoms in patients with lung cancer. Br J Cancer. 2015;112:438–45.

    Article  PubMed  Google Scholar 

  34. Baumann FT, Reike A, Reimer V, Schumann M, Hallek M, Taaffe DR, Newton RU, Galvao DA. Effects of physical exercise on breast cancer-related secondary lymphedema: a systematic review. Breast Cancer Res Treat. 2018;170:1–13.

    Article  CAS  PubMed  Google Scholar 

  35. Osypiuk K, Ligibel J, Giobbie-Hurder A, Vergara-Diaz G, Bonato P, Quinn R, Ng W, Wayne PM. Qigong mind-body exercise as a biopsychosocial therapy for persistent post-surgical pain in breast cancer: a pilot study. Integr Cancer Ther. 2020;19:1534735419893766.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang Q, Li F, Zhang H, Yu X, Cong Y. Effects of nurse-led home-based exercise & cognitive behavioral therapy on reducing cancer-related fatigue in patients with ovarian cancer during and after chemotherapy: a randomized controlled trial. Int J Nurs Stud. 2018;78:52–60.

    Article  PubMed  Google Scholar 

  37. Salerno EA, Culakova E, Kleckner AS, Heckler CE, Lin PJ, Matthews CE, Conlin A, Weiselberg L, Mitchell J, Mustian KM, Janelsins MC. Physical activity patterns and relationships with cognitive function in patients with breast cancer before, during, and after chemotherapy in a prospective, nationwide study. J Clin Oncol Off J Am Soc Clin Oncol. 2021;39:3283–92.

    Article  CAS  Google Scholar 

  38. Vadiraja HS, Raghavendra RM, Nagarathna R, Nagendra HR, Rekha M, Vanitha N, Gopinath KS, Srinath BS, Vishweshwara MS, Madhavi YS, Ajaikumar BS, Ramesh BS, Nalini R, Kumar V. Effects of a yoga program on cortisol rhythm and mood states in early breast cancer patients undergoing adjuvant radiotherapy: a randomized controlled trial. Integr Cancer Ther. 2009;8:37–46.

    Article  CAS  PubMed  Google Scholar 

  39. Cormie P, Pumpa K, Galvão DA, Turner E, Spry N, Saunders C, Zissiadis Y, Newton RU. Is it safe and efficacious for women with lymphedema secondary to breast cancer to lift heavy weights during exercise: a randomised controlled trial. J Cancer Surviv Res Practice. 2013;7:413–24.

    Article  Google Scholar 

  40. Basha MA, Aboelnour NH, Alsharidah AS, Kamel FH. Effect of exercise mode on physical function and quality of life in breast cancer-related lymphedema: a randomized trial. Support Care Cancer Off J Multinatl Assoc Support Care Cancer. 2022;30:2101–10.

    Google Scholar 

  41. Koevoets EW, Schagen SB, de Ruiter MB, Geerlings MI, Witlox L, van der Wall E, Stuiver MM, Sonke GS, Velthuis MJ, Jobsen JJ, Menke-Pluijmers MBE, Göker E, van der Pol CC, Bos M, Tick LW, van Holsteijn NA, van der Palen J, May AM, Monninkhof EM. Effect of physical exercise on cognitive function after chemotherapy in patients with breast cancer: a randomized controlled trial (PAM study). Breast Cancer Res BCR. 2022;24:36.

    Article  CAS  PubMed  Google Scholar 

  42. Campbell KL, Kam JWY, Neil-Sztramko SE, Liu Ambrose T, Handy TC, Lim HJ, Hayden S, Hsu L, Kirkham AA, Gotay CC, McKenzie DC, Boyd LA. Effect of aerobic exercise on cancer-associated cognitive impairment: a proof-of-concept RCT. Psycho-oncology. 2018;27:53–60.

    Article  CAS  PubMed  Google Scholar 

  43. Lanctôt D, Dupuis G, Marcaurell R, Anestin AS, Bali M. The effects of the Bali Yoga Program (BYP-BC) on reducing psychological symptoms in breast cancer patients receiving chemotherapy: results of a randomized, partially blinded, controlled trial. J Complement Integr Med. 2016;13:405–12.

    Article  PubMed  Google Scholar 

  44. Yan L, Wei JA, Yang F, Wang M, Wang S, Cheng T, Liu X, Jia Y, So KF, Zhang L. Physical exercise prevented stress-induced anxiety via improving brain RNA methylation. Adv Sci (Weinheim Baden-Wurttemberg, Germany). 2022;9: e2105731.

    Google Scholar 

  45. Reis AD, Pereira P, Diniz RR, de Castro Filha JGL, Dos Santos AM, Ramallo BT, Filho FAA, Navarro F, Garcia JBS. Effect of exercise on pain and functional capacity in breast cancer patients. Health Qual Life Outcomes. 2018;16:58.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Juvet LK, Thune I, Elvsaas I, Fors EA, Lundgren S, Bertheussen G, Leivseth G, Oldervoll LM. The effect of exercise on fatigue and physical functioning in breast cancer patients during and after treatment and at 6 months follow-up: a meta-analysis. Breast (Edinb Scotland). 2017;33:166–77.

    Article  CAS  Google Scholar 

  47. Wolin KY, Schwartz AL, Matthews CE, Courneya KS, Schmitz KH. Implementing the exercise guidelines for cancer survivors. J Support Oncol. 2012;10:171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Exercise During Cancer Treatment. https://www.cancer.net/survivorship/healthy-living/exercise-during-cancer-treatment. Accessed 21 Sept 2022.

  49. Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, Froelicher VF, Leon AS, Piña IL, Rodney R, Simons-Morton DA, Williams MA, Bazzarre T. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104:1694–740.

    Article  CAS  PubMed  Google Scholar 

  50. Stout NL, Baima J, Swisher AK, Winters-Stone KM, Welsh J. A systematic review of exercise systematic reviews in the cancer literature (2005–2017). PM R. 2017;9:S347-s384.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput JP, Chastin S, Chou R, Dempsey PC, DiPietro L, Ekelund U, Firth J, Friedenreich CM, Garcia L, Gichu M, Jago R, Katzmarzyk PT, Lambert E, Leitzmann M, Milton K, Ortega FB, Ranasinghe C, Stamatakis E, Tiedemann A, Troiano RP, Vander Ploeg HP, Wari V, Willumsen JF. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54:1451–62.

    Article  PubMed  Google Scholar 

  52. Meyer T, Lucía A, Earnest CP, Kindermann W. A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters–theory and application. Int J Sports Med. 2005;26(Suppl 1):S38-48.

    Article  PubMed  Google Scholar 

  53. Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.

    Article  PubMed  Google Scholar 

  54. Malhotra R, Bakken K, D’Elia E, Lewis GD. Cardiopulmonary exercise testing in heart failure. JACC Heart Fail. 2016;4:607–16.

    Article  PubMed  Google Scholar 

  55. Deka P, Pozehl BJ, Pathak D, Williams M, Norman JF, Alonso WW, Jaarsma T. Predicting maximal oxygen uptake from the 6 min walk test in patients with heart failure. ESC Heart Fail. 2021;8:47–54.

    Article  PubMed  Google Scholar 

  56. Achten J, Jeukendrup AE. Heart rate monitoring: applications and limitations. Sports Med (Auckland NZ). 2003;33:517–38.

    Article  Google Scholar 

  57. Berkelmans DM, Dalbo VJ, Fox JL, Stanton R, Kean CO, Giamarelos KE, Teramoto M, Scanlan AT. Influence of different methods to determine maximum heart rate on training load outcomes in basketball players. J Strength Cond Res. 2018;32:3177–85.

    Article  PubMed  Google Scholar 

  58. Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sports Med (Auckland NZ). 2020;50:1729–56.

    Article  Google Scholar 

  59. Poole DC, Rossiter HB, Brooks GA, Gladden LB. The anaerobic threshold: 50+ years of controversy. J Physiol. 2021;599:737–67.

    Article  CAS  PubMed  Google Scholar 

  60. Hoffman-Goetz L. Physical activity and cancer prevention: animal-tumor models. Med Sci Sports Exerc. 2003;35:1828–33.

    Article  PubMed  Google Scholar 

  61. Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. J Sport Health Sci. 2020;9:53–73.

    Article  PubMed  Google Scholar 

  62. Høydal MA, Wisløff U, Kemi OJ, Ellingsen O. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol Work Groups Epidemiol Prevent Card Rehabil Exercise Physiol. 2007;14:753–60.

    Google Scholar 

  63. Baltgalvis KA, Berger FG, Peña MM, Davis JM, Carson JA. The interaction of a high-fat diet and regular moderate intensity exercise on intestinal polyp development in Apc Min/+ mice. Cancer Prevent Res (Philadelphia, PA). 2009;2:641–9.

    Article  CAS  Google Scholar 

  64. van Waart H, Stuiver MM, van Harten WH, Geleijn E, Kieffer JM, Buffart LM, de Maaker-Berkhof M, Boven E, Schrama J, Geenen MM, MeerumTerwogt JM, van Bochove A, Lustig V, van den Heiligenberg SM, Smorenburg CH, Hellendoorn-van Vreeswijk JA, Sonke GS, Aaronson NK. Effect of low-intensity physical activity and moderate- to high-intensity physical exercise during adjuvant chemotherapy on physical fitness, fatigue, and chemotherapy completion rates: results of the PACES randomized clinical trial. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33:1918–27.

    Article  Google Scholar 

  65. Kim CJ, Kang DH, Smith BA, Landers KA. Cardiopulmonary responses and adherence to exercise in women newly diagnosed with breast cancer undergoing adjuvant therapy. Cancer Nurs. 2006;29:156–65.

    Article  PubMed  Google Scholar 

  66. Courneya KS, McKenzie DC, Mackey JR, Gelmon K, Friedenreich CM, Yasui Y, Reid RD, Cook D, Jespersen D, Proulx C, Dolan LB, Forbes CC, Wooding E, Trinh L, Segal RJ. Effects of exercise dose and type during breast cancer chemotherapy: multicenter randomized trial. J Natl Cancer Inst. 2013;105:1821–32.

    Article  PubMed  Google Scholar 

  67. Wang J, Song H, Tang X, Yang Y, Vieira VJ, Niu Y, Ma Y. Effect of exercise training intensity on murine T-regulatory cells and vaccination response. Scand J Med Sci Sports. 2012;22:643–52.

    Article  CAS  PubMed  Google Scholar 

  68. Demmelmaier I, Brooke HL, Henriksson A, Mazzoni AS, Bjørke ACH, Igelström H, Ax AK, Sjövall K, Hellbom M, Pingel R, Lindman H, Johansson S, Velikova G, Raastad T, Buffart LM, Åsenlöf P, Aaronson NK, Glimelius B, Nygren P, Johansson B, Börjeson S, Berntsen S, Nordin K. Does exercise intensity matter for fatigue during (neo-)adjuvant cancer treatment? The Phys-Can randomized clinical trial. Scand J Med Sci Sports. 2021;31:1144–59.

    Article  PubMed  Google Scholar 

  69. Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev. 2008;36:58–63.

    Article  PubMed  Google Scholar 

  70. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595:2915–30.

    Article  CAS  PubMed  Google Scholar 

  71. Toohey K, Pumpa K, McKune A, Cooke J, Welvaert M, Northey J, Quinlan C, Semple S. The impact of high-intensity interval training exercise on breast cancer survivors: a pilot study to explore fitness, cardiac regulation and biomarkers of the stress systems. BMC Cancer. 2020;20:787.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.

    Article  CAS  PubMed  Google Scholar 

  73. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8.

    Article  CAS  PubMed  Google Scholar 

  74. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.

    Article  CAS  PubMed  Google Scholar 

  75. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B. Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998;94:715–25.

    Article  CAS  PubMed  Google Scholar 

  76. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    Article  CAS  PubMed  Google Scholar 

  77. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wiggins JM, Opoku-Acheampong AB, Baumfalk DR, Siemann DW, Behnke BJ. Exercise and the tumor microenvironment: potential therapeutic implications. Exerc Sport Sci Rev. 2018;46:56–64.

    Article  PubMed  Google Scholar 

  80. Koivula T, Lempiäinen S, Rinne P, Rannikko JH, Hollmén M, Sundberg CJ, Rundqvist H, Minn H, Heinonen I. The effect of acute exercise on circulating immune cells in newly diagnosed breast cancer patients. Sci Rep. 2023;13:6561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eskola J, Ruuskanen O, Soppi E, Viljanen MK, Järvinen M, Toivonen H, Kouvalainen K. Effect of sport stress on lymphocyte transformation and antibody formation. Clin Exp Immunol. 1978;32:339–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee JK, Jee YS. Effect of resistance exercise on acquired immunocytes in cancer survivors: a pilot study. Int Neurourol J. 2021;25:S96-105.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hutnick NA, Williams NI, Kraemer WJ, Orsega-Smith E, Dixon RH, Bleznak AD, Mastro AM. Exercise and lymphocyte activation following chemotherapy for breast cancer. Med Sci Sports Exerc. 2005;37:1827–35.

    Article  PubMed  Google Scholar 

  84. Proschinger S, Winker M, Joisten N, Bloch W, Palmowski J, Zimmer P. The effect of exercise on regulatory T cells: a systematic review of human and animal studies with future perspectives and methodological recommendations. Exerc Immunol Rev. 2021;27:142–66.

    PubMed  Google Scholar 

  85. Dorneles GP, Dos Passos AAZ, Romão PRT, Peres A. New insights about regulatory T cells distribution and function with exercise: the role of immunometabolism. Curr Pharm Des. 2020;26:979–90.

    Article  CAS  PubMed  Google Scholar 

  86. Bergmann C. Regulatory T cells and NK cells in cancer patients. HNO. 2014;62:406–14.

    Article  CAS  PubMed  Google Scholar 

  87. Zimmer P, Baumann FT, Bloch W, Zopf EM, Schulz S, Latsch J, Schollmayer F, Shimabukuro-Vornhagen A, von Bergwelt-Baildon M, Schenk A. Impact of a half marathon on cellular immune system, pro-inflammatory cytokine levels, and recovery behavior of breast cancer patients in the aftercare compared to healthy controls. Eur J Haematol. 2016;96:152–9.

    Article  CAS  PubMed  Google Scholar 

  88. Rundqvist H, Veliça P, Barbieri L, Gameiro PA, Bargiela D, Gojkovic M, Mijwel S, Reitzner SM, Wulliman D, Ahlstedt E, Ule J, Östman A, Johnson RS. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife. 2020. https://doi.org/10.7554/eLife.59996.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Koelwyn GJ, Zhuang X, Tammela T, Schietinger A, Jones LW. Exercise and immunometabolic regulation in cancer. Nat Metab. 2020;2:849–57.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Buss LA, Williams T, Hock B, Ang AD, Robinson BA, Currie MJ, Dachs GU. Effects of exercise and anti-PD-1 on the tumour microenvironment. Immunol Lett. 2021;239:60–71.

    Article  CAS  PubMed  Google Scholar 

  91. Wennerberg E, Lhuillier C, Rybstein MD, Dannenberg K, Rudqvist NP, Koelwyn GJ, Jones LW, Demaria S. Exercise reduces immune suppression and breast cancer progression in a preclinical model. Oncotarget. 2020;11:452–61.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kärre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319:675–8.

    Article  PubMed  Google Scholar 

  93. Idorn M, Hojman P. Exercise-dependent regulation of NK cells in cancer protection. Trends Mol Med. 2016;22:565–77.

    Article  CAS  PubMed  Google Scholar 

  94. Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, Johannesen HH, Becker JC, Pedersen KS, Dethlefsen C, Nielsen J, Gehl J, Pedersen BK, Thor Straten P, Hojman P. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 2016;23:554–62.

    Article  CAS  PubMed  Google Scholar 

  95. Timmons BW, Cieslak T. Human natural killer cell subsets and acute exercise: a brief review. Exerc Immunol Rev. 2008;14:8–23.

    PubMed  Google Scholar 

  96. Gannon GA, Rhind SG, Suzui M, Shek PN, Shephard RJ. Circulating levels of peripheral blood leucocytes and cytokines following competitive cycling. Can J Appl Physiol Rev Can Physiol Appl. 1997;22:133–47.

    Article  CAS  Google Scholar 

  97. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229:176–85.

    Article  CAS  PubMed  Google Scholar 

  98. Woods JA, Davis JM. Exercise, monocyte/macrophage function, and cancer. Med Sci Sports Exerc. 1994;26:147–56.

    Article  CAS  PubMed  Google Scholar 

  99. Kim MK, Kim Y, Park S, Kim E, Kim Y, Kim Y, Kim JH. Effects of steady low-intensity exercise on high-fat diet stimulated breast cancer progression via the alteration of macrophage polarization. Integr Cancer Ther. 2020;19:1534735420949678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. de Lima C, Alves LE, Iagher F, Machado AF, Bonatto SJ, Kuczera D, de Souza CF, Pequito DC, Muritiba AL, Nunes EA, Fernandes LC. Anaerobic exercise reduces tumor growth, cancer cachexia and increases macrophage and lymphocyte response in Walker 256 tumor-bearing rats. Eur J Appl Physiol. 2008;104:957–64.

    Article  PubMed  Google Scholar 

  101. Singh MP, Singh G, Singh SM. Role of host’s antitumor immunity in exercise-dependent regression of murine T-cell lymphoma. Comp Immunol Microbiol Infect Dis. 2005;28:231–48.

    Article  PubMed  Google Scholar 

  102. Galdiero MR, Varricchi G, Loffredo S, Mantovani A, Marone G. Roles of neutrophils in cancer growth and progression. J Leukoc Biol. 2018;103:457–64.

    Article  CAS  PubMed  Google Scholar 

  103. Cui C, Chakraborty K, Tang XA, Zhou G, Schoenfelt KQ, Becker KM, Hoffman A, Chang YF, Blank A, Reardon CA, Kenny HA, Vaisar T, Lengyel E, Greene G, Becker L. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell. 2021;184:3163-3177.e3121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov. 2020;19:253–75.

    Article  PubMed  Google Scholar 

  105. Almeida PW, Gomes-Filho A, Ferreira AJ, Rodrigues CE, Dias-Peixoto MF, Russo RC, Teixeira MM, Cassali GD, Ferreira E, Santos IC, Garcia AM, Silami-Garcia E, Wisløff U, Pussieldi GA. Swim training suppresses tumor growth in mice. J Appl Physiol (Bethesda MD 1985). 2009;107:261–5.

    Article  Google Scholar 

  106. Templeton AJ, McNamara MG, Šeruga B, Vera-Badillo FE, Aneja P, Ocaña A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, Tannock IF, Amir E. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106:dju124.

    Article  PubMed  Google Scholar 

  107. Winker M, Stössel S, Neu MA, Lehmann N, El Malki K, Paret C, Joisten N, Bloch W, Zimmer P, Faber J. Exercise reduces systemic immune inflammation index (SII) in childhood cancer patients. Support Care Cancer Off J Multinatl Assoc Support Care Cancer. 2022;30:2905–8.

    Google Scholar 

  108. Sitlinger A, Brander DM, Bartlett DB. Impact of exercise on the immune system and outcomes in hematologic malignancies. Blood Adv. 2020;4:1801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Turbitt WJ, Xu Y, Sosnoski DM, Collins SD, Meng H, Mastro AM, Rogers CJ. Physical activity plus energy restriction prevents 4T1.2 mammary tumor progression, MDSC accumulation, and an immunosuppressive tumor microenvironment. Cancer Prevent Res (Philadelphia, PA). 2019;12:493–506.

    Article  CAS  Google Scholar 

  110. Kiecolt-Glaser JK, Bennett JM, Andridge R, Peng J, Shapiro CL, Malarkey WB, Emery CF, Layman R, Mrozek EE, Glaser R. Yoga’s impact on inflammation, mood, and fatigue in breast cancer survivors: a randomized controlled trial. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32:1040–9.

    Article  Google Scholar 

  111. Kaushik D, Shah PK, Mukherjee N, Ji N, Dursun F, Kumar AP, Thompson IM Jr, Mansour AM, Jha R, Yang X, Wang H, Darby N, RicardoRivero J, Svatek RS, Liss MA. Effects of yoga in men with prostate cancer on quality of life and immune response: a pilot randomized controlled trial. Prostate Cancer Prostatic Dis. 2022;25:531–8.

    Article  CAS  PubMed  Google Scholar 

  112. Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. 2020;20:294–307.

    Article  CAS  PubMed  Google Scholar 

  113. Shephard RJ. Adhesion molecules, catecholamines and leucocyte redistribution during and following exercise. Sports Med (Auckland, NZ). 2003;33:261–84.

    Article  Google Scholar 

  114. McCarthy DA, Dale MM. The leucocytosis of exercise. A review and model. Sports Med (Auckland, NZ). 1988;6:333–63.

    Article  CAS  Google Scholar 

  115. Baj Z, Kantorski J, Majewska E, Zeman K, Pokoca L, Fornalczyk E, Tchórzewski H, Sulowska Z, Lewicki R. Immunological status of competitive cyclists before and after the training season. Int J Sports Med. 1994;15:319–24.

    Article  CAS  PubMed  Google Scholar 

  116. Wackerhage H, Christensen JF, Ilmer M, von Luettichau I, Renz BW, Schönfelder M. Cancer catecholamine conundrum. Trends Cancer. 2022;8:110–22.

    Article  CAS  PubMed  Google Scholar 

  117. Simpson RJ, Boßlau TK, Weyh C, Niemiro GM, Batatinha H, Smith KA, Krüger K. Exercise and adrenergic regulation of immunity. Brain Behav Immun. 2021;97:303–18.

    Article  CAS  PubMed  Google Scholar 

  118. Kjaer M, Secher NH, Bach FW, Sheikh S, Galbo H. Hormonal and metabolic responses to exercise in humans: effect of sensory nervous blockade. Am J Physiol. 1989;257:E95–101.

    CAS  PubMed  Google Scholar 

  119. Graff RM, Kunz HE, Agha NH, Baker FL, Laughlin M, Bigley AB, Markofski MM, LaVoy EC, Katsanis E, Bond RA, Bollard CM, Simpson RJ. β(2)-Adrenergic receptor signaling mediates the preferential mobilization of differentiated subsets of CD8+ T-cells, NK-cells and non-classical monocytes in response to acute exercise in humans. Brain Behav Immun. 2018;74:143–53.

    Article  CAS  PubMed  Google Scholar 

  120. PérezPiñero C, Rivero EM, Gargiulo L, Rodríguez MS, Bruque CD, Bruzzone A, Lüthy IA. Adrenergic receptors in breast cancer. Progr Mol Biol Transl Sci. 2022;193:37–63.

    Article  Google Scholar 

  121. Bruck H, Leineweber K, Beilfuss A, Weber M, Heusch G, Philipp T, Brodde OE. Genotype-dependent time course of lymphocyte beta 2-adrenergic receptor down-regulation. Clin Pharmacol Ther. 2003;74:255–63.

    Article  CAS  PubMed  Google Scholar 

  122. Kohm AP, Sanders VM. Norepinephrine: a messenger from the brain to the immune system. Immunol Today. 2000;21:539–42.

    Article  CAS  PubMed  Google Scholar 

  123. Williams LT, Snyderman R, Lefkowitz RJ. Identification of beta-adrenergic receptors in human lymphocytes by (-) (3H) alprenolol binding. J Clin Investig. 1976;57:149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Landmann R. Beta-adrenergic receptors in human leukocyte subpopulations. Eur J Clin Invest. 1992;22(Suppl 1):30–6.

    PubMed  Google Scholar 

  125. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52:595–638.

    CAS  PubMed  Google Scholar 

  126. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    Article  CAS  PubMed  Google Scholar 

  128. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.

    Article  CAS  PubMed  Google Scholar 

  129. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91:1071–121.

    Article  CAS  PubMed  Google Scholar 

  130. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:1011–27.

    Article  CAS  Google Scholar 

  131. Fan Z, Turiel G, Ardicoglu R, Ghobrial M, Masschelein E, Kocijan T, Zhang J, Tan G, Fitzgerald G, Gorski T, Alvarado-Diaz A, Gilardoni P, Adams CM, Ghesquière B, De Bock K. Exercise-induced angiogenesis is dependent on metabolically primed ATF3/4(+) endothelial cells. Cell Metab. 2021;33:1793-1807.e1799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. 2008;8:425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Investig. 2020;130:5074–87.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Cooper C, Liu GY, Niu YL, Santos S, Murphy LC, Watson PH. Intermittent hypoxia induces proteasome-dependent down-regulation of estrogen receptor alpha in human breast carcinoma. Clin Cancer Res Off J Am Assoc Can Res. 2004;10:8720–7.

    Article  CAS  Google Scholar 

  135. Isanejad A, Alizadeh AM, Amani Shalamzari S, Khodayari H, Khodayari S, Khori V, Khojastehnjad N. MicroRNA-206 let-7a and microRNA-21 pathways involved in the anti-angiogenesis effects of the interval exercise training and hormone therapy in breast cancer. Life Sci. 2016;151:30–40.

    Article  CAS  PubMed  Google Scholar 

  136. Dysthe M, Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment. Adv Exp Med Biol. 2020;1224:117–40.

    Article  CAS  PubMed  Google Scholar 

  137. Koelwyn GJ, Wennerberg E, Demaria S, Jones LW. Exercise in regulation of inflammation-immune axis function in cancer initiation and progression. Oncology (Williston Park, NY). 2015;29:908–20.

    Google Scholar 

  138. Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, Sethumadhavan S, Philbrook P, Ko K, Cannici R, Thayer M, Rodig S, Kutok JL, Jackson EK, Karger B, Podack ER, Ohta A, Sitkovsky MV. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med. 2015;7: 277ra230.

    Article  Google Scholar 

  139. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science (New York, NY). 2005;307:58–62.

    Article  CAS  Google Scholar 

  140. Jordan VC. Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discovery. 2003;2:205–13.

    Article  CAS  PubMed  Google Scholar 

  141. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9:285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, Pollak M. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science (New York, NY). 1998;279:563–6.

    Article  CAS  Google Scholar 

  143. Hsing AW, Gao YT, Chua S Jr, Deng J, Stanczyk FZ. Insulin resistance and prostate cancer risk. J Natl Cancer Inst. 2003;95:67–71.

    Article  CAS  PubMed  Google Scholar 

  144. Barnard RJ, Aronson WJ. Preclinical models relevant to diet, exercise, and cancer risk, recent results in cancer research. Fortschr Krebsforsch Progr Recher Cancer. 2005;166:47–61.

    CAS  Google Scholar 

  145. Irwin ML, Varma K, Alvarez-Reeves M, Cadmus L, Wiley A, Chung GG, Dipietro L, Mayne ST, Yu H. Randomized controlled trial of aerobic exercise on insulin and insulin-like growth factors in breast cancer survivors: the Yale Exercise and Survivorship study. Cancer Epidemiol Biomark Prevent Publ Am Assoc Cancer Res. 2009;18:306–13.

    Article  CAS  Google Scholar 

  146. Kim JS, Galvão DA, Newton RU, Gray E, Taaffe DR. Exercise-induced myokines and their effect on prostate cancer. Nat Rev Urol. 2021;18:519–42.

    Article  CAS  PubMed  Google Scholar 

  147. Sheinboim D, Parikh S, Manich P, Markus I, Dahan S, Parikh R, Stubbs E, Cohen G, Zemser-Werner V, Bell RE, Ruiz SA, Percik R, Brenner R, Leibou S, Vaknine H, Arad G, Gerber Y, Keinan-Boker L, Shimony T, Bikovski L, Goldstein N, Constantini K, Labes S, Mordechai S, Doron H, Lonescu A, Ziv T, Nizri E, Choshen G, Eldar-Finkelman H, Tabach Y, Helman A, Ben-Eliyahu S, Erez N, Perlson E, Geiger T, Ben-Zvi D, Khaled M, Gepner Y, Levy C. An exercise-induced metabolic shield in distant organs blocks cancer progression and metastatic dissemination. Can Res. 2022;82:4164–78.

    Article  CAS  Google Scholar 

  148. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hofmann P. Cancer and exercise: Warburg hypothesis, tumour metabolism and high-intensity anaerobic exercise. Sports (Basel, Switzerland). 2018;6:10.

    PubMed  Google Scholar 

  150. Britton KA, Massaro JM, Murabito JM, Kreger BE, Hoffmann U, Fox CS. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J Am Coll Cardiol. 2013;62:921–5.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Teras LR, Patel AV, Wang M, Yaun SS, Anderson K, Brathwaite R, Caan BJ, Chen Y, Connor AE, Eliassen AH, Gapstur SM, Gaudet MM, Genkinger JM, Giles GG, Lee IM, Milne RL, Robien K, Sawada N, Sesso HD, Stampfer MJ, Tamimi RM, Thomson CA, Tsugane S, Visvanathan K, Willett WC, Zeleniuch-Jacquotte A, Smith-Warner SA. Sustained weight loss and risk of breast cancer in women 50 years and older: a pooled analysis of prospective data. J Natl Cancer Inst. 2020;112:929–37.

    Article  PubMed  Google Scholar 

  152. Mika A, Macaluso F, Barone R, Di Felice V, Sledzinski T. Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. Front Physiol. 2019;10:26.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Fabian CJ, Klemp JR, Marchello NJ, Vidoni ED, Sullivan DK, Nydegger JL, Phillips TA, Kreutzjans AL, Hendry B, Befort CA, Nye L, Powers KR, Hursting SD, Giles ED, Hamilton-Reeves JM, Li B, Kimler BF. Rapid escalation of high-volume exercise during caloric restriction; change in visceral adipose tissue and adipocytokines in obese sedentary breast cancer survivors. Cancers. 2021;13:4871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol. 2019;9:1143.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Aveseh M, Nikooie R, Aminaie M. Exercise-induced changes in tumour LDH-B and MCT1 expression are modulated by oestrogen-related receptor alpha in breast cancer-bearing BALB/c mice. J Physiol. 2015;593:2635–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Feng Q, Liu Z, Yu X, Huang T, Chen J, Wang J, Wilhelm J, Li S, Song J, Li W, Sun Z, Sumer BD, Li B, Fu YX, Gao J. Lactate increases stemness of CD8 + T cells to augment anti-tumor immunity. Nat Commun. 2022;13:4981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Thompson HJ, Jiang W, Zhu Z. Candidate mechanisms accounting for effects of physical activity on breast carcinogenesis. IUBMB Life. 2009;61:895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–62.

    Article  CAS  PubMed  Google Scholar 

  159. Luo Z, Saha AK, Xiang X, Ruderman NB. AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci. 2005;26:69–76.

    Article  CAS  PubMed  Google Scholar 

  160. Piguet AC, Saran U, Simillion C, Keller I, Terracciano L, Reeves HL, Dufour JF. Regular exercise decreases liver tumors development in hepatocyte-specific PTEN-deficient mice independently of steatosis. J Hepatol. 2015;62:1296–303.

    Article  CAS  PubMed  Google Scholar 

  161. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 2012;481:511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Locasale JW. Diet and exercise in cancer metabolism. Cancer Discov. 2022;12:2249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 82173280), 1·3·5 project for disciplines of excellence—Clinical Research Incubation Project, West China Hospital, Sichuan University (ZYJC21016), and the Department of Science and Technology of Sichuan Province (grant number: 2021YJ0450).

Author information

Authors and Affiliations

Authors

Contributions

Anqi He, Yamin Pu, and Chengsen Jia prepared tables and figures. Anqi He and Yong Xia conceptualized and wrote the manuscript. Yamin Pu, Chengsen Jia, Mengling Wu and Hongchen He helped with conceptualization of the manuscript. All authors participated in manuscript editing and read and approved the final version.

Corresponding authors

Correspondence to Hongchen He or Yong Xia.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, A., Pu, Y., Jia, C. et al. The Influence of Exercise on Cancer Risk, the Tumor Microenvironment and the Treatment of Cancer. Sports Med (2024). https://doi.org/10.1007/s40279-024-02031-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40279-024-02031-2

Navigation