Skip to main content
Log in

Further results on covering codes with radius R and codimension \(tR+1\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The length function \(\ell _q(r,R)\) is the smallest possible length n of a q-ary linear \([n,n-r]_qR\) code with codimension (redundancy) r and covering radius R. Let \(s_q(N,\rho )\) be the smallest size of a \(\rho \)-saturating set in the projective space \(\textrm{PG}(N,q)\). There is a one-to-one correspondence between \([n,n-r]_qR\) codes and \((R-1)\)-saturating n-sets in \(\textrm{PG}(r-1,q)\) that implies \(\ell _q(r,R)=s_q(r-1,R-1)\). In this work, for \(R\ge 3\), new asymptotic upper bounds on \(\ell _q(tR+1,R)\) are obtained in the following form:

$$\begin{aligned}&\bullet ~\ell _q(tR+1,R) =s_q(tR,R-1)\\&\hspace{0.4cm} \le \root R \of {\frac{R!}{R^{R-2}}}\cdot q^{(r-R)/R}\cdot \root R \of {\ln q}+o(q^{(r-R)/R}), \hspace{0.3cm} r=tR+1,~t\ge 1,\\&\hspace{0.4cm}~ q\text { is an arbitrary prime power},~q\text { is large enough};\\&\bullet ~\text { if additionally }R\text { is large enough, then }\root R \of {\frac{R!}{R^{R-2}}}\thicksim \frac{1}{e}\thickapprox 0.3679. \end{aligned}$$

The new bounds are essentially better than the known ones. For \(t=1\), a new construction of \((R-1)\)-saturating sets in the projective space \(\textrm{PG}(R,q)\), providing sets of small sizes, is proposed. The \([n,n-(R+1)]_qR\) codes, obtained by the construction, have minimum distance \(R + 1\), i.e. they are almost MDS (AMDS) codes. These codes are taken as the starting ones in the lift-constructions (so-called “\(q^m\)-concatenating constructions”) for covering codes to obtain infinite families of codes with growing codimension \(r=tR+1\), \(t\ge 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Alderson T.L., Bruen A.A.: Maximal AMDS codes. Appl. Algebra Eng. Commun. Comput. 19(2), 87–98 (2008). https://doi.org/10.1007/s00200-008-0058-0.

    Article  MathSciNet  Google Scholar 

  2. Bartoli D., Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: New bounds for linear codes of covering radii 2 and 3. Crypt. Commun. 11(5), 903–920 (2019). https://doi.org/10.1007/s12095-018-0335-0.

    Article  MathSciNet  Google Scholar 

  3. Bierbrauer J.: Introduction to Coding Theory, 2nd edn Chapman and Hall/CRC Press, Boca Raton (2017).

    Google Scholar 

  4. Bose R.C., Burton R.C.: A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and McDonald codes. J. Comb. Theory 1(1), 96–104 (1966). https://doi.org/10.1016/S0021-9800(66)80007-8.

    Article  Google Scholar 

  5. Brualdi R.A., Litsyn S., Pless V.: Covering radius. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. 1, pp. 755–826. Elsevier, Amsterdam (1998).

    Google Scholar 

  6. Chen H., Qu L., Li C., Lyu S., Xu L.: Generalized Singleton type upper bounds, arXiv:2208.01138 (2020). https://doi.org/10.48550/arXiv.2208.01138.

  7. Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes. North-Holland Math. Library, vol. 54. Elsevier, Amsterdam (1997).

    Google Scholar 

  8. Davydov A.A.: Construction of linear covering codes. Probl. Inf. Transmiss. 26(4), 317–331 (1990).

    MathSciNet  Google Scholar 

  9. Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: Linear nonbinary covering codes and saturating sets in projective spaces. Adv. Math. Commun. 5(1), 119–147 (2011). https://doi.org/10.3934/amc.2011.5.119.

    Article  MathSciNet  Google Scholar 

  10. Davydov A.A., Marcugini S., Pambianco F.: New covering codes of radius \(R\), codimension \(tR\) and \(tR+\frac{R}{2}\), and saturating sets in projective spaces. Des. Codes Cryptogr. 87(12), 2771–2792 (2019). https://doi.org/10.1007/s10623-019-00649-2.

    Article  MathSciNet  Google Scholar 

  11. Davydov A.A., Marcugini S., Pambianco F.: New bounds for linear codes of covering radius 3 and 2-saturating sets in projective spaces. In: Proc. 2019 XVI Int. Symp. Problems Redundancy Inform. Control Systems (REDUNDANCY), Moscow, Russia, Oct. 2019, IEEE Xplore, pp. 47–52 (2020). https://doi.org/10.1109/REDUNDANCY48165.2019.9003348.

  12. Davydov A.A., Marcugini S., Pambianco F.: Upper bounds on the length function for covering codes with covering radius \(R\) and codimension \(tR+1\). Adv. Math. Commun. 17(1), 98–118 (2023). https://doi.org/10.3934/amc.2021074.

    Article  MathSciNet  Google Scholar 

  13. Davydov A.A., Marcugini S., Pambianco F.: New bounds for covering codes of radius 3 and codimension \(3t + 1\), Adv. Math. Commun. to appear. https://doi.org/10.3934/amc.2023042.

  14. Davydov A.A., Östergård P.R.J.: Linear codes with covering radius \(R=2,3\) and codimension \(tR\). IEEE Trans. Inf. Theory 47(1), 416–421 (2001). https://doi.org/10.1109/18.904551.

    Article  MathSciNet  Google Scholar 

  15. Davydov A.A., Östergård P.R.J.: Linear codes with covering radius 3. Des. Codes Cryptogr. 54(3), 253–271 (2010). https://doi.org/10.1007/s10623-009-9322-y.

    Article  MathSciNet  Google Scholar 

  16. De Boer M.A.: Almost MDS codes. Des. Codes Cryptogr. 9(2), 143–155 (1996). https://doi.org/10.1007/BF00124590.

    Article  MathSciNet  Google Scholar 

  17. Denaux L.: Constructing saturating sets in projective spaces using subgeometries. Des. Codes Cryptogr. 90(9), 2113–2144 (2022). https://doi.org/10.1007/s10623-021-00951-y.

    Article  MathSciNet  Google Scholar 

  18. Denaux L.: Higgledy-piggledy sets in projective spaces of small dimension. Electron. J. Comb. 29(3), Article #P3.29 (2022). https://doi.org/10.37236/10736.

  19. Dodunekov S., Landgev I.: On near-MDS codes. J. Geom. 54(1), 30–43 (1995). https://doi.org/10.1007/BF01222850.

    Article  MathSciNet  Google Scholar 

  20. Etzion T., Storme L.: Galois geometries and coding theory. Des. Codes Cryptogr. 78(1), 311–350 (2016). https://doi.org/10.1007/s10623-015-0156-5.

    Article  MathSciNet  Google Scholar 

  21. Giulietti M.: The geometry of covering codes: small complete caps and saturating sets in Galois spaces. In: Blackburn S. R., Holloway R., Wildon M. (eds.) Surveys in Combinatorics 2013, Lecture Note Series 409, pp. 51–90. London Math. Soc., Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139506748.003.

  22. Graham R.L., Sloane N.J.A.: On the covering radius of codes. IEEE Trans. Inf. Theory 31(1), 385–401 (1985). https://doi.org/10.1109/TIT.1985.1057039.

    Article  MathSciNet  Google Scholar 

  23. Héger T., Nagy Z.L.: Short minimal codes and covering codes via strong blocking sets in projective spaces. IEEE Trans. Inf. Theory 68(2), 881–890 (2022). https://doi.org/10.1109/TIT.2021.3123730.

    Article  MathSciNet  Google Scholar 

  24. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn Oxford Univ. Press, Oxford (1999).

    Google Scholar 

  25. Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces: Update 2001. In: Blokhuis A., Hirschfeld J.W.P., Jungnickel D., Thas J.A. (eds.) Finite Geometries (Proc. 4th Isle of Thorns Conf., July 16–21, 2000), Develop. Math. 3, pp. 201–246. Kluwer, Dordrecht, (2001). https://doi.org/10.1007/978-1-4613-0283-4_13.

  26. Huffman W.C., Pless V.S.: Fundamentals of Error-Correcting Codes. Cambridge Univ Press, Cambridge (2003).

    Book  Google Scholar 

  27. Jeffrey A., Dai H.H.: Handbook of Mathematical Formulas and Integrals, 4th edn Elsevier, Academic Press (2008).

    Google Scholar 

  28. Landjev I., Storme L.: Galois geometry and coding theory. In: De Beule J., Storme L. (eds.) Current Research Topics in Galois geometry, Chapter 8, pp. 187–214. NOVA Academic, New York (2011).

    Google Scholar 

  29. Lobstein A.: Covering radius, an online bibliography (2023). https://www.lri.fr/~lobstein/bib-a-jour.pdf.

  30. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes, 3rd edn North-Holland, Amsterdam (1981).

    Google Scholar 

  31. Meneghetti A., Pellegrini M., Sala M.: A formula on the weight distribution of linear codes with applications to AMDS codes. Finite Fields Appl. 77, article 101933 (2022). https://doi.org/10.1016/j.ffa.2021.101933.

  32. Nagy Z.L.: Saturating sets in projective planes and hypergraph covers. Discret. Math. 341(4), 1078–1083 (2018). https://doi.org/10.1016/j.disc.2018.01.011.

    Article  MathSciNet  Google Scholar 

  33. Robbins H.: A remark on Stirling’s formula. Am. Math. Monthly 62(1), 26–29 (1955). https://doi.org/10.2307/2308012.

    Article  MathSciNet  Google Scholar 

  34. Struik R.: Covering Codes. Ph.D thesis. Eindhoven University of Technology, The Netherlands, (1994). https://doi.org/10.6100/IR425174.

Download references

Acknowledgements

The authors would like to thank the anonymous referee for careful reading and helpful comments that improved the presentation of this paper. The research of S. Marcugini and F. Pambianco was supported in part by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INDAM) (Contract No. U-UFMBAZ-2019-000160, 11.02.2019) and by University of Perugia (Project No. 98751: Strutture Geometriche, Combinatoria e loro Applicazioni, Base Research Fund 2017–2019; Fighting Cybercrime with OSINT, Research Fund 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Marcugini.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by P. Charpin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, A.A., Marcugini, S. & Pambianco, F. Further results on covering codes with radius R and codimension \(tR+1\). Des. Codes Cryptogr. (2024). https://doi.org/10.1007/s10623-024-01402-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10623-024-01402-0

Keywords

Mathematics Subject Classification

Navigation