skip to main content
survey

A Systematic Literature Review of Novelty Detection in Data Streams: Challenges and Opportunities

Published:14 May 2024Publication History
Skip Abstract Section

Abstract

Novelty detection in data streams is the task of detecting concepts that were not known prior, in streams of data. Many machine learning algorithms have been proposed to detect these novelties, as well as integrate them. This study provides a systematic literature review of the state of novelty detection in data streams, including its advancement in recent years, its main challenges and solutions, an updated taxonomy for the classification of the proposed frameworks, and a comparative analysis of different key algorithms in this field. Additionally, we highlight ongoing challenges and future research directions that could be tackled moving forward.

REFERENCES

  1. [1] Abdallah Zahraa S., Gaber Mohamed Medhat, Srinivasan Bala, and Krishnaswamy Shonali. 2016. AnyNovel: Detection of novel concepts in evolving data streams. Evolv. Syst. 7, 2, SI (2016), 7393. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Abid Amal and Jamoussi Salma. 2016. Novelty detection in data stream clustering using the artificial immune system. In European Mediterranean & Middle Eastern Conference on Information Systems.Google ScholarGoogle Scholar
  3. [3] Abid A., Jamoussi S., and Hamadou A. B.. 2019. AIS-Clus: A bio-inspired method for textual data stream clustering. Vietnam. J. Comput. Sci. 6, 2 (2019), 223256. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Aggarwal Charu C., Yu Philip S., Han Jiawei, and Wang Jianyong. 2003. A framework for clustering evolving data streams. In VLDB Conference, Freytag Johann-Christoph, Lockemann Peter, Abiteboul Serge, Carey Michael, Selinger Patricia, and Heuer Andreas (Eds.). Morgan Kaufmann, San Francisco, 8192. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Agrahari Supriya and Singh Anil Kumar. 2022. Concept drift detection in data stream mining: A literature review. J. King Saud Univ. - Comput. Inf. Sci. 34, 10, Part B (2022), 95239540. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Al-Behadili Husam, Grumpe Arne, Dopp Christian, and Wöhler Christian. 2015. Extreme learning machine based novelty detection for incremental semi-supervised learning. In 3rd International Conference on Image Information Processing (ICIIP’15). 230235. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. [7] Al-Behadili H., Grumpe A., Migdadi L., and Wöhler C.. 2016. Incremental Parzen window classifier for a multi-class system. Int. J. Simul. Syst. Sci. Technol. 17, 34 (2016), 6.1–6.11. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Al-Behadili Husam, Grumpe Arne, Migdadi Lubaba, and Wöhler Christian. 2016. Semi-supervised learning using incremental support vector machine and extreme value theory in gesture data. In UKSim-AMSS 18th International Conference on Computer Modelling and Simulation (UKSim’16). 184189. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Al-Behadili Husam, Grumpe Arne, and Wöhler Christian. 2015. Semi-supervised learning using incremental polynomial classifier and extreme value theory. In 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS’15). 332337. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Al-Khateeb Tahseen, Masud Mohammad M., Al-Naami Khaled M., Seker Sadi Evren, Mustafa Ahmad M., Khan Latifur, Trabelsi Zouheir, Aggarwal Charu, and Han Jiawei. 2016. Recurring and novel class detection using class-based ensemble for evolving data stream. IEEE Trans. Knowl. Data Eng. 28, 10 (2016), 27522764. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Alghushairy Omar, Alsini Raed, Soule Terence, and Ma Xiaogang. 2021. A review of local outlier factor algorithms for outlier detection in big data streams. Big Data Cog. Comput. 5, 1 (2021). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Amorim Marta, Bortoloti Frederico D., Ciarelli Patrick M., Salles Evandro O. T., and Cavalieri Daniel C.. 2019. Novelty detection in social media by fusing text and image into a single structure. IEEE Access 7 (2019), 132786132802. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Costantina Caruso, Fabio Fumarola, Michele Todaro, and Donato Malerba. 2009. A relational approach to novelty detection in data streams. In 17th Italian Symposium on Advanced Database Systems (SEBD’09). 89100.Google ScholarGoogle Scholar
  14. [14] Assent Ira, Kranen Philipp, Baldauf Corinna, and Seidl Thomas. 2010. Detecting outliers on arbitrary data streams using anytime approaches. In 1st International Workshop on Novel Data Stream Pattern Mining Techniques (StreamKDD’10). Association for Computing Machinery, New York, NY, 1015. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. [15] Babcock Brian, Datar Mayur, and Motwani Rajeev. 2002. Sampling from a moving window over streaming data. In 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’02). Society for Industrial and Applied Mathematics, 633634. Google ScholarGoogle Scholar
  16. [16] Barbosa Nathalie A., Travé-Massuyès Louise, and Grisales Victor H.. 2016. A novel algorithm for dynamic clustering: Properties and performance. In 15th IEEE International Conference on Machine Learning and Applications (ICMLA’16). 565570. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Barddal Jean Paul, Gomes Heitor Murilo, and Enembreck Fabrício. 2015. SNCStream: A social network-based data stream clustering algorithm. In 30th Annual ACM Symposium on Applied Computing (SAC’15). Association for Computing Machinery, New York, NY, 935940. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Bezerra Clauber Gomes, Costa Bruno Sielly Jales, Guedes Luiz Affonso, and Angelov Plamen Parvanov. 2020. An evolving approach to data streams clustering based on typicality and eccentricity data analytics. Inf. Sci. 518 (2020), 1328. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. [19] Bi Xin, Zhang Chao, Zhao Xiangguo, Li Donghang, Sun Yongjiao, and Ma Yuliang. 2020. CODES: Efficient incremental semi-supervised classification over drifting and evolving social streams. IEEE Access 8 (2020), 1402414035. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Bifet Albert, Holmes Geoff, Kirkby Richard, and Pfahringer Bernhard. 2010. MOA: Massive online analysis. J. Mach. Learn. Res. 11 (2010), 16011604. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. [21] Blackard Jock. 1998. Covertype. UCI Machine Learning Repository. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Bouguelia Mohamed-Rafik, Belaid Yolande, and Belaid Abdel. 2014. Efficient active novel class detection for data stream classification. In 22nd International Conference on Pattern Recognition. 28262831. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [23] Bouguelia Mohamed-Rafik, Nowaczyk Slawomir, and Payberah Amir H.. 2018. An adaptive algorithm for anomaly and novelty detection in evolving data streams. Data Min. Knowl. Discov. 32, 6 (2018), 15971633. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Branco Paula, Torgo Luís, and Ribeiro Rita P.. 2016. A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. 49, 2, Article 31 (Aug. 2016), 50 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. [25] Fahy C. and Yang S.. 2019. Finding and tracking multi-density clusters in online dynamic data streams. IEEE Trans. Big Data 8, 1 (2019). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Fahy C., Yang S., and Gongora M.. 2021. Classification in dynamic data streams with a scarcity of labels. IEEE Trans. Knowl. Data Eng. 35, 4 (2021). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. [27] Puerto-Santana C., Bielza C., Diaz-Rozo J., Ramirez-Gargallo G., Mantovani F., Virumbrales G., Labarta J., and Larrañaga P.. 2022. Asymmetric HMMs for online ball-bearing health assessments. IEEE Internet Things J. 9, 20 (2022). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Carino Jesus A., Delgado-Prieto Miguel, Iglesias Jose Antonio, Sanchis Araceli, Zurita Daniel, Millan Marta, Redondo Juan Antonio Ortega, and Romero-Troncoso Rene. 2018. Fault detection and identification methodology under an incremental learning framework applied to industrial machinery. IEEE Access 6 (2018), 4975549766. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Carreño Ander, Inza Iñaki, and Lozano Jose A.. 2023. SNDProb: A probabilistic approach for streaming novelty detection. IEEE Trans. Knowl. Data Eng. 35, 6 (2023), 63356348. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. [30] Cattral Robert and Oppacher Franz. 2007. Poker Hand. UCI Machine Learning Repository. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Ceci Michelangelo, Appice Annalisa, Loglisci Corrado, Caruso Costantina, Fumarola Fabio, and Malerba Donato. 2009. Novelty detection from evolving complex data streams with time windows. In Foundations of Intelligent Systems, Rauch Jan, Raś Zbigniew W., Berka Petr, and Elomaa Tapio (Eds.). Springer Berlin, 563572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Ceci Michelangelo, Appice Annalisa, Loglisci Corrado, Caruso Costantina, Fumarola Fabio, Valente Carmine, and Malerba Donato. 2009. Relational frequent patterns mining for novelty detection from data streams. In Machine Learning and Data Mining in Pattern Recognition, Perner Petra (Ed.). Springer Berlin, 427439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. [33] Chandak M. B.. 2016. Role of big-data in classification and novel class detection in data streams. J. Big Data 3, 1 (2016). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Chandola Varun, Banerjee Arindam, and Kumar Vipin. 2009. Anomaly detection: A survey. ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Christophe Clément, Velcin Julien, Cugliari Jairo, Suignard Philippe, and Boumghar Manel. 2019. How to detect novelty in textual data streams? A comparative study of existing methods. CoRR abs/1909.05099 (2019).Google ScholarGoogle Scholar
  36. [36] Júnior Joel D. Costa, Faria Elaine R., Silva Jonathan A., Gama João, and Cerri Ricardo. 2019. Novelty detection for multi-label stream classification. In 8th Brazilian Conference on Intelligent Systems (BRACIS’19). 144149. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Júnior Joel D. Costa, Faria Elaine R., Silva Jonathan A., Gama João, and Cerri Ricardo. 2019. Pruned sets for multi-label stream classification without true labels. In International Joint Conference on Neural Networks (IJCNN’19). 18. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Cristiani A. L., Silva T. P. da, and Arruda Camargo H. de. 2020. A Fuzzy Approach for Classification and Novelty Detection in Data Streams under Intermediate Latency. Vol. 12320 LNAI. Springer Science and Business Media Deutschland GmbH. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094105335&doi=10.1007%2f978-3-030-61380-8_12&partnerID=40&md5=0eae673986a6bbf4fa8fed3560ced91fGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Cristiani André Luis and Camargo Heloisa de Arruda. 2021. A fuzzy multi-class novelty detector for data streams under intermediate latency. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’21). 16. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] Zhou D. -W., Yang Y., and Zhan D. -C.. 2022. Learning to classify with incremental new class. IEEE Trans. Neural Netw. Learn. Syst. 33, 6 (2022), 24292443. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Silva Tiago Pinho da and Camargo Heloisa de Arruda. 2020. Possibilistic approach for novelty detection in data streams. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’20). 18. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. [42] Silva Tiago Pinho da, Schick Leonardo, Lopes Priscilla de Abreu, and Camargo Heloisa de Arruda. 2018. A fuzzy multiclass novelty detector for data streams. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’18). 18. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Faria Elaine Ribeiro de, Carvalho Andre Carlos Ponce de Leon Ferreira, and Gama Joao. 2016. MINAS: Multiclass learning algorithm for novelty detection in data streams. Data Min. Knowl. Discov. 30, 3 (2016), 640680. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [44] Faria Elaine Ribeiro de, Goncalves Isabel Ribeiro, Gama Joao, and Carvalho Andre Carlos Ponce de Leon Ferreira. 2015. Evaluation of multiclass novelty detection algorithms for data streams. IEEE Trans. Knowl. Data Eng. 27, 11 (2015), 29612973. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Deng Li. 2012. The MNIST database of handwritten digit images for machine learning research. IEEE Sig. Process. Mag. 29, 6 (2012), 141142.Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Din S. U., Shao J., Kumar J., Mawuli C. B., Mahmud S. M. H., Zhang W., and Yang Q.. 2021. Data stream classification with novel class detection: A review, comparison and challenges. Knowl. Inf. Syst. 63, 9 (2021), 22312276. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. [47] Din Salah Ud and Shao Junming. 2020. Exploiting evolving micro-clusters for data stream classification with emerging class detection. Inf. Sci. 507 (2020), 404420. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. [48] Dua Dheeru and Graff Casey. 2017. UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.edu/mlGoogle ScholarGoogle Scholar
  49. [49] Dufrenois F.. 2022. Incremental and compressible kernel null discriminant analysis. Pattern Recog. 127 (2022). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. [50] Erfani Sarah M., Rajasegarar Sutharshan, and Leckie Christopher. 2011. An efficient approach to detecting concept-evolution in network data streams. In Australasian Telecommunication Networks and Applications Conference (ATNAC’11). 17. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Ester Martin, Kriegel Hans-Peter, Sander Jörg, and Xu Xiaowei. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96). AAAI Press, 226231.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. [52] Fahy C. and Yang S.. 2022. Finding and tracking multi-density clusters in online dynamic data streams. IEEE Trans. Big Data 8, 1 (2022), 178192. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Fahy Conor, Yang Shengxiang, and Gongora Mario. 2022. Scarcity of labels in non-stationary data streams: A survey. ACM Comput. Surv. 55, 2 (2022). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. [54] Faria Elaine R., Gama João, and Carvalho André C. P. L. F.. 2013. Novelty detection algorithm for data streams multi-class problems. In 28th Annual ACM Symposium on Applied Computing (SAC’13). Association for Computing Machinery, New York, NY, 795800. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. [55] Faria Elaine R., Gonçalves Isabel J. C. R., Carvalho André C. P. L. F. de, and Gama João. 2016. Novelty detection in data streams. Artif. Intell. Rev. 45, 2 (01 Feb. 2016), 235269. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. [56] Farid Dewan Md. and Rahman Chowdhury Mofizur. 2012. Novel class detection in concept-drifting data stream mining employing decision tree. In 7th International Conference on Electrical and Computer Engineering. 630633. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  57. [57] Farid Dewan Md., Zhang Li, Hossain Alamgir, Rahman Chowdhury Mofizur, Strachan Rebecca, Sexton Graham, and Dahal Keshav. 2013. An adaptive ensemble classifier for mining concept drifting data streams. Expert Syst. Applic. 40, 15 (2013), 58955906. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. [58] Fei Geli, Wang Shuai, and Liu Bing. 2016. Learning cumulatively to become more knowledgeable. In 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). Association for Computing Machinery, New York, NY, 15651574. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. [59] Fisher R. A.. 1988. Iris. UCI Machine Learning Repository. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  60. [60] Gaisser Floris, Rudinac Maja, Jonker Pieter P., and Tax David. 2013. Online face recognition and learning for cognitive robots. In 16th International Conference on Advanced Robotics (ICAR’13). 19. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Gama Joao. 2010. Knowledge Discovery from Data Streams (1st ed.). Chapman & Hall/CRC. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. [62] Gama João. 2012. A survey on learning from data streams: Current and future trends. Progr. Artif. Intell. 1, 1 (01 Apr. 2012), 4555. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  63. [63] Gama Joao, Aguilar-Ruiz Jesus, and Klinkenberg Ralf. 2008. Knowledge discovery from data streams. Intell. Data Anal. 12, 3 (2008), 251252.Google ScholarGoogle ScholarCross RefCross Ref
  64. [64] Gama J. and Rodrigues P. P.. 2009. An Overview on Mining Data Streams. Vol. 206. Springer Verlag.Google ScholarGoogle Scholar
  65. [65] Gao Yang, Li Yi-Fan, Dong Bo, Lin Yu, and Khan Latifur. 2019. SIM: Open-world multi-task stream classifier with integral similarity metrics. In IEEE International Conference on Big Data (Big Data’19). 751760. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  66. [66] Garcia K. D., Faria E. R. de, Sá C. R. de, Mendes-Moreira J., Aggarwal C. C., Carvalho A. C. P. L. F. de, and Kok J. N.. 2019. Ensemble Clustering for Novelty Detection in Data Streams. Vol. 11828 LNAI. Springer. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075818430&doi=10.1007%2f978-3-030-33778-0_34&partnerID=40&md5=f7e0ef1c2bd475220bfc08ad313f7892Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. [67] Garcia K. D., Poel M., Kok J. N., and Carvalho A. C. P. L. F. de. 2019. Online Clustering for Novelty Detection and Concept Drift in Data Streams. Vol. 11805 LNAI. Springer Verlag. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072863596&doi=10.1007%2f978-3-030-30244-3_37&partnerID=40&md5=999cff0b90e22b120a04beb28879dee8Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. [68] Gaudreault Jean-Gabriel and Branco Paula. 2023. Toward streamlining the evaluation of novelty detection in data streams. In Discovery Science, Bifet Albert, Lorena Ana Carolina, Ribeiro Rita P., Gama João, and Abreu Pedro H. (Eds.). Springer Nature Switzerland, Cham, 703717. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. [69] Gaudreault Jean-Gabriel, Branco Paula, and Gama João. 2021. An analysis of performance metrics for imbalanced classification. In Discovery Science, Soares Carlos and Torgo Luis (Eds.). Springer International Publishing, Cham, 6777. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. [70] Geng Chuanxing, Huang Sheng-Jun, and Chen Songcan. 2018. Recent advances in open set recognition: A survey. CoRR abs/1811.08581 (2018).Google ScholarGoogle Scholar
  71. [71] Gomes Heitor Murilo, Barddal Jean Paul, Enembreck Fabricio, and Bifet Albert. 2017. A survey on ensemble learning for data stream classification. ACM Comput. Surv. 50, 2 (2017). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. [72] Gomes Heitor Murilo, Grzenda Maciej, Mello Rodrigo, Read Jesse, Nguyen Minh Huong Le, and Bifet Albert. 2022. A survey on semi-supervised learning for delayed partially labelled data streams. ACM Comput. Surv. 55, 4 (2022). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. [73] Gomes Heitor Murilo, Read Jesse, Bifet Albert, Barddal Jean Paul, and Gama João. 2019. Machine learning for streaming data: State of the art, challenges, and opportunities. SIGKDD Explor. Newslett. 21, 2 (2019), 622. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. [74] Gruhl Christian, Hannan Abdul, Huang Zhixin, Nivarthi Chandana, and Vogt Stephan. 2021. The problem with real-world novelty detection—Issues in multivariate probabilistic models. In IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C’21). 204209. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  75. [75] Guo Xiaojie, Alipour-Fanid Amir, Wu Lingfei, Purohit Hemant, Chen Xiang, Zeng Kai, and Zhao Liang. 2019. Multi-stage deep classifier cascades for open world recognition. In 28th ACM International Conference on Information and Knowledge Management (CIKM’19). Association for Computing Machinery, New York, NY, 179188. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. [76] Gupta Manish, Gao Jing, Aggarwal Charu C., and Han Jiawei. 2014. Outlier detection for temporal data: A survey. IEEE Trans. Knowl. Data Eng. 26, 9 (2014), 22502267. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  77. [77] Hamdi Fatma and Bennani Younès. 2011. Learning random subspace novelty detection filters. In International Joint Conference on Neural Networks. 22732280. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  78. [78] Haque Ahsanul, Khan Latifur, and Baron Michael. 2015. Semi supervised adaptive framework for classifying evolving data stream. In Advances in Knowledge Discovery and Data Mining, Cao Tru, Lim Ee-Peng, Zhou Zhi-Hua, Ho Tu-Bao, Cheung David, and Motoda Hiroshi (Eds.). Springer International Publishing, Cham, 383394. Google ScholarGoogle ScholarCross RefCross Ref
  79. [79] Haque Ahsanul, Khan Latifur, and Baron Michael. 2016. SAND: Semi-supervised adaptive novel class detection and classification over data stream. In 30th AAAI Conference on Artificial Intelligence (AAAI’16). AAAI Press, 16521658.Google ScholarGoogle ScholarCross RefCross Ref
  80. [80] Haque Ahsanul, Khan Latifur, Baron Michael, Thuraisingham Bhavani, and Aggarwal Charu. 2016. Efficient handling of concept drift and concept evolution over stream data. In IEEE 32nd International Conference on Data Engineering (ICDE’16). 481492. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  81. [81] Michael Harries and University of New South Wales. 1999. Splice-2 Comparative Evaluation: Electricity Pricing. School of Computer Science and Engineering. https://webarchive.nla.gov.au/awa/20040915173921/ http://pandora.nla.gov.au/pan/32869/20040907-0000/ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/9905.pdfGoogle ScholarGoogle Scholar
  82. [82] Hawkins Douglas M.. 1980. Identification of Outliers. Vol. 11. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  83. [83] Hayat Morteza Zi and Hashemi Mahmoud Reza. 2010. A DCT based approach for detecting novelty and concept drift in data streams. In International Conference of Soft Computing and Pattern Recognition. 373378. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  84. [84] Ikonomovska Elena, Gama João, and Džeroski Sašo. 2011. Learning model trees from evolving data streams. Data Min. Knowl. Discov. 23, 1 (01 July 2011), 128168. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. [85] Islam M. R.. 2014. Recurring and Novel Class Detection in Concept-drifting Data Streams using Class-based Ensemble. Vol. 8444 LNAI. Springer Verlag, Tainan. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901284721&doi=10.1007%2f978-3-319-06605-9_35&partnerID=40&md5=815b3814260fc7a9d82a6e5a7ef48835Google ScholarGoogle ScholarCross RefCross Ref
  86. [86] Sangma J. W., Rani Y., Pal V., Kumar N., and Kushwaha R.. 2022. FHC-NDS: Fuzzy hierarchical clustering of multiple nominal data streams. IEEE Trans. Fuzzy Syst. 31, 3 (2022), 112. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. [87] Jameel Syed Muslim, Hashmani Manzoor Ahmed, Rehman Mobashar, and Budiman Arif. 2020. An adaptive deep learning framework for dynamic image classification in the internet of things environment. Sensors 20, 20 (2020). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  88. [88] Jodelka Olga, Anagnostopoulos Christos, and Kolomvatsos Kostas. 2021. Adaptive novelty detection over contextual data streams at the edge using one-class classification. In 12th International Conference on Information and Communication Systems (ICICS’12). 213219. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  89. [89] Kang J. M., Ahmad M. A., Teredesai A., and Gaborski R.. 2007. Cognitively motivated novelty detection in video data streams. In Multimedia Data ing and Knowledge Discovery.Springer London, 209233. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861620807&doi=10.1007%2f978-1-84628-799-2_11&partnerID=40&md5=991b9f9a639c084c49f4fa3f204fe7b9Google ScholarGoogle ScholarCross RefCross Ref
  90. [90] Killourhy Kevin S. and Maxion Roy A.. 2009. Comparing anomaly-detection algorithms for keystroke dynamics. In IEEE/IFIP International Conference on Dependable Systems & Networks. 125134. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  91. [91] Kitchenham Barbara, Brereton O. Pearl, Budgen David, Turner Mark, Bailey John, and Linkman Stephen. 2009. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 51, 1 (2009), 715. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. [92] Kongsorot Yanika, Horata Punyaphol, and Musikawan Pakarat. 2020. An incremental kernel extreme learning machine for multi-label learning with emerging new labels. IEEE Access 8 (2020), 4605546070. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  93. [93] Krawczyk Bartosz, Minku Leandro L., Gama Joao, Stefanowski Jerzy, and Wozniak Michal. 2017. Ensemble learning for data stream analysis: A survey. Inf. Fusion 37 (2017), 132156. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. [94] Krawczyk Bartosz and Wozniak Michal. 2015. One-class classifiers with incremental learning and forgetting for data streams with concept drift. Soft Comput. 19, 12, SI (2015), 33873400. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. [95] Krawczyk Bartosz and Woźniak Michał. 2015. Reacting to different types of concept drift with adaptive and incremental one-class classifiers. In IEEE 2nd International Conference on Cybernetics (CYBCONF’15). 3035. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  96. [96] Lemos Andre, Caminhas Walmir, and Gomide Fernando. 2013. Adaptive fault detection and diagnosis using an evolving fuzzy classifier. Inf. Sci. 220 (2013), 6485. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. [97] Li Xiangjun, Zhou Yong, Jin Ziyan, Yu Peng, and Zhou Shun. 2020. A classification and novel class detection algorithm for concept drift data stream based on the cohesiveness and separation index of Mahalanobis distance. J. Electric. Comput. Eng. 2020 (2020). Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. [98] Liu Jing, Xu Guo-Sheng, Xiao Da, Gu Li-Ze, and Niu Xin-Xin. 2013. A semi-supervised ensemble approach for mining data streams. J. Comput. 8, 11, SI (2013), 28732879. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  99. [99] Liu K.-H., Zhan W.-P., Liang Y.-F., Zhang Y.-N., Guo H.-Z., Yao J.-F., Wu Q.-Q., and Hong Q.-Q.. 2022. The design of error-correcting output codes algorithm for the open-set recognition. Appl. Intell. 52, 7 (2022), 78437869. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. [100] Lo Sin Kit, Lu Qinghua, Wang Chen, Paik Hye-Young, and Zhu Liming. 2021. A systematic literature review on federated machine learning: From a software engineering perspective. ACM Comput. Surv. 54, 5, Article 95 (May 2021), 39 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. [101] Mahdavi Atefeh and Carvalho Marco. 2021. A survey on open set recognition. In IEEE 4th International Conference on Artificial Intelligence and Knowledge Engineering (AIKE’21). IEEE. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  102. [102] Maleki Sepehr and Bingham Chris. 2019. Robust hierarchical clustering for novelty identification in sensor networks: With applications to industrial systems. Appl. Soft Comput. 85 (2019). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. [103] Masud Mohammad M., Al-Khateeb Tahseen M., Khan Latifur, Aggarwal Charu, Gao Jing, Han Jiawei, and Thuraisingham Bhavani. 2011. Detecting recurring and novel classes in concept-drifting data streams. In IEEE 11th International Conference on Data Mining. 11761181. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. [104] Masud Mohammad M., Chen Qing, Gao Jing, Khan Latifur, Han Jiawei, and Thuraisingham Bhavani. 2010. Classification and novel class detection of data streams in a dynamic feature space. In Machine Learning and Knowledge Discovery in Databases, Balcázar José Luis, Bonchi Francesco, Gionis Aristides, and Sebag Michèle (Eds.). Springer Berlin, 337352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. [105] Masud Mohammad M., Chen Qing, Khan Latifur, Aggarwal Charu, Gao Jing, Han Jiawei, and Thuraisingham Bhavani. 2010. Addressing concept-evolution in concept-drifting data streams. In IEEE International Conference on Data Mining. 929934. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. [106] Masud Mohammad M., Chen Qing, Khan Latifur, Aggarwal Charu C., Gao Jing, Han Jiawei, Srivastava Ashok, and Oza Nikunj C.. 2013. Classification and adaptive novel class detection of feature-evolving data streams. IEEE Trans. Knowl. Data Eng. 25, 7 (2013), 14841497. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. [107] Masud Mohammad M., Gao Jing, Khan Latifur, Han Jiawei, and Thuraisingham Bhavani. 2009. Integrating novel class detection with classification for concept-drifting data streams. In Machine Learning and Knowledge Discovery in Databases, Buntine Wray, Grobelnik Marko, Mladenić Dunja, and Shawe-Taylor John (Eds.). Springer Berlin, 7994. Google ScholarGoogle ScholarCross RefCross Ref
  108. [108] Masud Mohammad M., Gao Jing, Khan Latifur, Han Jiawei, and Thuraisingham Bhavani. 2010. Classification and novel class detection in data streams with active mining. In Advances in Knowledge Discovery and Data Mining, Zaki Mohammed J., Yu Jeffrey Xu, Ravindran B., and Pudi Vikram (Eds.). Springer Berlin, 311324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. [109] Masud Mohammad M., Gao Jing, Khan Latifur, Han Jiawei, and Thuraisingham Bhavani. 2011. Classification and novel class detection in concept-drifting data streams under time constraints. IEEE Trans. Knowl. Data Eng. 23, 6 (2011), 859874. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. [110] Mendelson Shon and Lerner Boaz. 2020. Online cluster drift detection for novelty detection in data streams. In 19th IEEE International Conference on Machine Learning and Applications (ICMLA’20). 171178. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  111. [111] Miao Xuedan, Liu Ying, Zhao Haiquan, and Li Chunguang. 2019. Distributed online one-class support vector machine for anomaly detection over networks. IEEE Trans. Cybern. 49, 4 (2019), 14751488. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  112. [112] Miao Y., Qiu L., Chen H., Zhang J., and Wen Y.. 2013. Novel Class Detection within Classification for Data Streams. Vol. 7952 LNCS. Springer Verlag, Dalian. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880754617&doi=10.1007%2f978-3-642-39068-5_50&partnerID=40&md5=c39851e79cce6a28d2eed8c34ca8b9aaGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  113. [113] Mohamad Saad, Sayed-Mouchaweh Moamar, and Bouchachia Abdelhamid. 2018. Active learning for classifying data streams with unknown number of classes. Neural Netw. 98 (2018), 115. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  114. [114] Mu Xin, Ting Kai Ming, and Zhou Zhi-Hua. 2017. Classification under streaming emerging new classes: A solution using completely-random trees. IEEE Trans. Knowl. Data Eng. 29, 8 (2017), 16051618. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. [115] Mustafa Ahmad M., Ayoade Gbadebo, Al-Naami Khaled, Khan Latifur, Hamlen Kevin W., Thuraisingham Bhavani, and Araujo Frederico. 2017. Unsupervised deep embedding for novel class detection over data stream. In IEEE International Conference on Big Data (Big Data’17). 18301839. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  116. [116] Na Gyoung S., Kim Donghyun, and Yu Hwanjo. 2018. DILOF: Effective and memory efficient local outlier detection in data streams. In 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’18). Association for Computing Machinery, New York, NY, 19932002. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. [117] Ozbilge Emre. 2019. Experiments in online expectation-based novelty-detection using 3D shape and colour perceptions for mobile robot inspection. Robot. Auton. Syst. 117 (2019), 6879. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. [118] Pan Jinxing, Yang Xiaoshan, Huang Yi, and Xu Changsheng. 2022. Few-shot egocentric multimodal activity recognition. In ACM Multimedia Asia (MMAsia’21). Association for Computing Machinery, New York, NY, Article 23, 7 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. [119] Park Cheong Hee. 2019. Outlier and anomaly pattern detection on data streams. J. Supercomput. 75, 9 (2019), 61186128. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. [120] Parker Brandon, Mustafa Ahmad M., and Khan Latifur. 2012. Novel class detection and feature via a tiered ensemble approach for stream mining. In IEEE 24th International Conference on Tools with Artificial Intelligence, Vol. 1. 11711178. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. [121] Parker Brandon S. and Khan Latifur. 2015. Detecting and tracking concept class drift and emergence in non-stationary fast data streams. In 29th AAAI Conference on Artificial Intelligence (AAAI’15). AAAI Press, 29082913. Google ScholarGoogle ScholarCross RefCross Ref
  122. [122] Pitonakova Lenka and Bullock Seth. 2020. The robustness-fidelity trade-off in Grow When Required neural networks performing continuous novelty detection. Neural Netw. 122 (2020), 183195. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. [123] Razavi-Far Roozbeh, Hallaji Ehsan, Saif Mehrdad, and Ditzler Gregory. 2019. A novelty detector and extreme verification latency model for nonstationary environments. IEEE Trans. Industr. Electron. 66, 1 (2019), 561570. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  124. [124] Reiss Attila. 2012. PAMAP2 Physical Activity Monitoring. UCI Machine Learning Repository. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  125. [125] Ren Huorong, Ye Zhixing, and Li Zhiwu. 2017. Anomaly detection based on a dynamic Markov model. Inf. Sci. 411 (2017), 5265. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  126. [126] Roa Nathalie Barbosa, Trave-Massuyes Louise, and Grisales-Palacio Victor H.. 2019. DyClee: Dynamic clustering for tracking evolving environments. Pattern Recog. 94 (2019), 162186. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. [127] Rovetta Stefano, Mnasri Zied, and Masulli Francesco. 2020. Detection of hazardous road events from audio streams: An ensemble outlier detection approach. In IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS’20). 16. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  128. [128] Rusiecki Andrzej. 2012. Robust neural network for novelty detection on data streams. In Artificial Intelligence and Soft Computing, Rutkowski Leszek, Korytkowski Marcin, Scherer Rafał, Tadeusiewicz Ryszard, Zadeh Lotfi A., and Zurada Jacek M. (Eds.). Springer Berlin, 178186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. [129] Sagi Omer and Rokach Lior. 2018. Ensemble learning: A survey. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 8, 4 (2018), e1249.Google ScholarGoogle ScholarCross RefCross Ref
  130. [130] Saha Deepita, Haque Mozzammel, Sarkar Akash, Alam Famina, Farid Dewan Md, Rahman Chowdhury Mofizur, and Shatabda Swakkhar. 2018. IEEE WIECON-ECE 2018 novel class detection in concept drifting data streams using decision tree leaves. In IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE’18). 8790. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  131. [131] Salehi Mohammadreza, Mirzaei Hossein, Hendrycks Dan, Li Yixuan, Rohban Mohammad Hossein, and Sabokrou Mohammad. 2021. A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: Solutions and future challenges. CoRR abs/2110.14051 (2021).Google ScholarGoogle Scholar
  132. [132] Scheirer Walter J., Rocha Anderson de Rezende, Sapkota Archana, and Boult Terrance E.. 2013. Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 7 (2013), 17571772. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. [133] Siahroudi Sajjad Kamali, Moodi Poorya Zare, and Beigy Hamid. 2018. Detection of evolving concepts in non-stationary data streams: A multiple kernel learning approach. Expert Syst. Applic. 91 (2018), 187197. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. [134] Costa Bruno Sielly Jales, Bezerra Clauber Gomes, Guedes Luiz Affonso, and Angelov Plamen Parvanov. 2016. Unsupervised classification of data streams based on Typicality and Eccentricity Data Analytics. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’16). 5863. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. [135] Silva Jonathan A., Faria Elaine R., Barros Rodrigo C., Hruschka Eduardo R., Carvalho André C. P. L. F. de, and Gama João. 2013. Data stream clustering: A survey. ACM Comput. Surv. 46, 1, Article 13 (July 2013), 31 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. [136] Sisiaridis Dimitrios, Carcillo Fabrizio, and Markowitch Olivier. 2016. A framework for threat detection in communication systems. In 20th Pan-Hellenic Conference on Informatics (PCI’16). Association for Computing Machinery, New York, NY, Article 68, 6 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. [137] Smith James Seale, Baer Seth, Kira Zsolt, and Dovrolis Constantine. 2019. Unsupervised continual learning and self-taught associative memory hierarchies. CoRR abs/1904.02021 (2019).Google ScholarGoogle Scholar
  138. [138] Smith Mark, Reece Steven, Roberts Stephen, Psorakis Ioannis, and Rezek Iead. 2014. Maritime abnormality detection using Gaussian processes. Knowl. Inf. Syst. 38, 3 (2014), 717741. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  139. [139] Soleimani-Babakamali M. H., Sepasdar R., Nasrollahzadeh K., and Sarlo R.. 2022. A system reliability approach to real-time unsupervised structural health monitoring without prior information. Mech. Syst. Sig. Process. 171 (2022). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  140. [140] Souza Vinicius M. A., Reis Denis M. dos, Maletzke André G., and Batista Gustavo E. A. P. A.. 2020. Challenges in benchmarking stream learning algorithms with real-world data. Data Min. Knowl. Discov. 34, 6 (01 Nov. 2020), 18051858. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. [141] Spinosa Eduardo J., Carvalhoa Andre Ponce de Leon F. de, and Gama Joao. 2009. Novelty detection with application to data streams. Intell. Data Anal. 13, 3 (2009), 405422. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  142. [142] Spinosa Eduardo J., Carvalho André Ponce de Leon F. de, and Gama João. 2007. OLINDDA: A cluster-based approach for detecting novelty and concept drift in data streams. In ACM Symposium on Applied Computing (SAC’07). Association for Computing Machinery, New York, NY, 448452. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. [143] Spinosa Eduardo J., Carvalho André Ponce de Leon F. de, and Gama João. 2008. Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks. In ACM Symposium on Applied Computing (SAC’08). Association for Computing Machinery, New York, NY, 976980. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. [144] Sriwatanasakdi Noppayut, Numao Masayuki, and Fukui Ken-ichi. 2017. Concept drift detection for graph-structured classifiers under scarcity of true labels. In IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI’17). 461468. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  145. [145] Salvatore Fan Wei Lee Wenke Prodromidis Andreas Stolfo, and Chan Philip. 1999. KDD Cup 1999 Data. UCI Machine Learning Repository. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  146. [146] Thakran Yogita and Toshniwal Durga. 2012. Unsupervised outlier detection in streaming data using weighted clustering. In 12th International Conference on Intelligent Systems Design and Applications (ISDA’12). 947952. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  147. [147] Vallim Rosane M. M., Filho José A. Andrade, de Carvalho André C. P. L. F., and Gama João. 2012. A density-based clustering approach for behavior change detection in data streams. In Brazilian Symposium on Neural Networks. 3742. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. [148] Vallim Rosane M. M., Filho Jose A. Andrade, Mello Rodrigo F. de, and Carvalho Andre C. P. L. F. de. 2013. Online behavior change detection in computer games. Expert Syst. Applic. 40, 16 (2013), 62586265. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. [149] Vallim Rosane M. M., Filho Jose A. Andrade, Mello Rodrigo F. de, Carvalho Andre C. P. L. F. de, and Gama Joao. 2014. Unsupervised density-based behavior change detection in data streams. Intell. Data Anal. 18, 2 (2014), 181201. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  150. [150] Eck Nees Jan van and Waltman Ludo. 2011. Text mining and visualization using VOSviewer. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  151. [151] Vergeles Anna, Khaya Alexander, Prokopenko Dmytro, and Manakova Nataliia. 2018. Unsupervised real-time stream-based novelty detection technique an approach in a corporate cloud. In IEEE 2nd International Conference on Data Stream Mining & Processing (DSMP’18). 166170. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  152. [152] Wan Zhiyuan, Xia Xin, Lo David, and Murphy Gail C.. 2021. How does machine learning change software development practices? IEEE Trans. Softw. Eng. 47, 9 (2021), 18571871. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  153. [153] Wang X. and Xing Y.. 2019. An online support vector machine for the open-ended environment. Expert Syst. Applic. 120 (2019), 7286. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  154. [154] Wang Yigong, Wang Zhuoyi, Lin Yu, Khan Latifur, and Li Dingcheng. 2021. CIFDM: Continual and interactive feature distillation for multi-label stream learning. In 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’21). Association for Computing Machinery, New York, NY, 21212125. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. [155] Wang Yi, Xue Nan, Fan Xin, Luo Jiebo, Liu Risheng, Chen Bin, Li Haojie, and Luo Zhongxuan. 2018. Fast factorization-free kernel learning for unlabeled chunk data streams. In 27th International Joint Conference on Artificial Intelligence (IJCAI’18). AAAI Press, 28332839. Google ScholarGoogle ScholarDigital LibraryDigital Library
  156. [156] Wang Zhuoyi, Kong Zelun, Changra Swarup, Tao Hemeng, and Khan Latifur. 2019. Robust high dimensional stream classification with novel class detection. In IEEE 35th International Conference on Data Engineering (ICDE’19). 14181429. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  157. [157] Wang Zhuoyi, Tao Hemeng, Kong Zelun, Chandra Swarup, and Khan Latifur. 2019. Metric learning based framework for streaming classification with concept evolution. In International Joint Conference on Neural Networks (IJCNN’19). 18. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  158. [158] Wang Zhuoyi, Wang Yigong, Lin Yu, Delord Evan, and Latifur Khan. 2020. Few-sample and adversarial representation learning for continual stream mining. In The Web Conference (WWW’20). Association for Computing Machinery, New York, NY, 718728. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. [159] Weiss Christian and Zell Andreas. 2008. Novelty detection and online learning for vibration-based terrain classification. Intell. Auton. Syst. 10, IAS 2008 (01 2008). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  160. [160] Wurzer Dominik and Qin Yumeng. 2018. Parameterizing kterm hashing. In 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR’18). Association for Computing Machinery, New York, NY, 945948. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. [161] Xu Yiyang, Li Yan, and Li YunJie. 2019. Fuzzy ARTMAP network and clustering for streaming classification under emerging new classes. In IEEE International Conference on Signal, Information and Data Processing (ICSIDP’19). 15. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  162. [162] Gao Y., Chandra S., Li Y., Khan L., and Thuraisingham B. M.. 2020. SACCOS: A semi-supervised framework for emerging class detection and concept drift adaption over data streams. IEEE Trans. Knowl. Data Eng. 34, 3 (2020). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  163. [163] Wang Y., Ding Y., He X., Fan X., Lin C., Li F., Wang T., Luo Z., and Luo J.. 2021. Novelty detection and online learning for chunk data streams. IEEE Trans. Pattern Anal. Mach. Intell. 43, 7 (2021), 24002412. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  164. [164] Yan Shipeng, Zhou Jiale, Xie Jiangwei, Zhang Songyang, and He Xuming. 2021. An EM framework for online incremental learning of semantic segmentation. In 29th ACM International Conference on Multimedia (MM’21). Association for Computing Machinery, New York, NY, 30523060. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. [165] Yeoh Jia Ming, Caraffini Fabio, Homapour Elmina, Santucci Valentino, and Milani Alfredo. 2019. A clustering system for dynamic data streams based on metaheuristic optimisation. Mathematics 7, 12 (2019). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  166. [166] Yogita and Toshniwal Durga. 2012. A framework for outlier detection in evolving data streams by weighting attributes in clustering. Procedia Technol. 6 (2012), 214222. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  167. [167] Yogita and Toshniwal Durga. 2013. Clustering techniques for streaming data-a survey. In 3rd IEEE International Advance Computing Conference (IACC’13). 951956. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  168. [168] ZareMoodi Poorya, Beigy Hamid, and Siahroudi Sajjad Kamali. 2015. Novel class detection in data streams using local patterns and neighborhood graph. Neurocomputing 158 (2015), 234245. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  169. [169] ZareMoodi Poorya, Siahroudi Sajjad Kamali, and Beigy Hamid. 2016. A support vector based approach for classification beyond the learned label space in data streams. In 31st Annual ACM Symposium on Applied Computing (SAC’16). Association for Computing Machinery, New York, NY, 910915. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  170. [170] ZareMoodi Poorya, Siahroudi Sajjad Kamali, and Beigy Hamid. 2019. Concept-evolution detection in non-stationary data streams: A fuzzy clustering approach. Knowl. Inf. Syst. 60, 3 (2019), 13291352. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  171. [171] Zhang Dan, Liu Yan, and Si Luo. 2011. Serendipitous learning: Learning beyond the predefined label space. In 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’11). Association for Computing Machinery, New York, NY, 13431351. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  172. [172] Zhang Tian, Ramakrishnan Raghu, and Livny Miron. 1997. BIRCH: A new data clustering algorithm and its applications. Data Min. Knowl. Discov. 1, 2 (1997), 141182.Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. [173] Zhang Z., Li Y., Jin C., and Gao M.. 2018. Adaptive matrix sketching and clustering for semisupervised incremental learning. IEEE Sig. Process Lett. 25, 7 (2018), 10691073. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  174. [174] Zheng Xiulin, Li Peipei, Hu Xuegang, and Yu Kui. 2021. Semi-supervised classification on data streams with recurring concept drift and concept evolution. Knowl.-based Syst. 215 (2021). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  175. [175] Zhou Da-Wei, Yang Yang, and Zhan De-Chuan. 2021. Detecting sequentially novel classes with stable generalization ability. In Advances in Knowledge Discovery and Data Mining, Karlapalem Kamal, Cheng Hong, Ramakrishnan Naren, Agrawal R. K., Reddy P. Krishna, Srivastava Jaideep, and Chakraborty Tanmoy (Eds.). Springer International Publishing, Cham, 371382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. [176] Zhou Yuxun, Arghandeh Reza, and Spanos Costas J.. 2016. Online learning of contextual hidden Markov models for temporal-spatial data analysis. In IEEE 55th Conference on Decision and Control (CDC’16). 63356341. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  177. [177] Zhu Yong-Nan and Li Yu-Feng. 2020. Semi-supervised streaming learning with emerging new labels. Proc. AAAI Conf. Artif. Intell. 34, 04 (Apr. 2020), 70157022. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  178. [178] Özbilge E.. 2016. On-line expectation-based novelty detection for mobile robots. Robot Autom. Syst. 81 (2016), 3347. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. [179] Šajina R., Tanković N., and Etinger D.. 2020. Novel class detection in non-stationary streaming environment with a discriminative classifier. In 43rd International Convention on Information, Communication and Electronic Technology (MIPRO’20). 11091113. DOI:Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Systematic Literature Review of Novelty Detection in Data Streams: Challenges and Opportunities

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Computing Surveys
            ACM Computing Surveys  Volume 56, Issue 10
            October 2024
            325 pages
            ISSN:0360-0300
            EISSN:1557-7341
            DOI:10.1145/3613652
            Issue’s Table of Contents

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 14 May 2024
            • Online AM: 12 April 2024
            • Accepted: 6 April 2024
            • Revised: 19 February 2024
            • Received: 9 April 2023
            Published in csur Volume 56, Issue 10

            Check for updates

            Qualifiers

            • survey
          • Article Metrics

            • Downloads (Last 12 months)337
            • Downloads (Last 6 weeks)337

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Full Text

          View this article in Full Text.

          View Full Text