Skip to main content
Log in

On Bose distance of a class of BCH codes with two types of designed distances

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

BCH codes are an interesting class of cyclic codes with good error-correcting capability and have wide applications in communication and storage systems due to their efficient encoding and decoding algorithms. Let \(\mathbb {F}_q\) be the finite field of size q and \(n=q^m-1\), where m is a positive integer. Let \(\mathcal C_{(q, m, \delta )}\) be the primitive narrow-sense BCH codes of length n over \(\mathbb {F}_q\) with designed distance \(\delta \). Denote \(s = m - t\), \(r = m \bmod s\) and \(\lambda = \lfloor t/s \rfloor \). In this paper, we mainly investigate the dimensions and Bose distances of the codes \({\mathcal {C}}_{(q, m, \delta )}\) with designed distance of the following two types:

  1. 1.

    \(\delta =q^t+h\), \(\lceil \frac{m}{2} \rceil \le t < m\), \(0 \le h < q^s + \sum \limits _{i = 1}^{\lambda - 1} q^{r + is}\);

  2. 2.

    \(\delta =q^t-h\), \(\lceil \frac{m}{2} \rceil< t < m\), \(0 \le h < (q-1) \sum \limits _{i = 1}^{s} q^{i}\).

This extensively extends the results on Bose distance in Ding et al (IEEE Trans Inf Theory 61(5):2351–2356, 2015). Moreover, the parameters of the hulls of the BCH code \({\mathcal {C}}_{(q, m, q^t)}\) are studied in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus E.F. Jr., Key J.D.: Affine and projective planes. Discret. Math. 83(2–3), 161–187 (1990).

    Article  MathSciNet  Google Scholar 

  2. Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).

    Article  MathSciNet  Google Scholar 

  3. Augot D., Charpin P., Sendrier N.: Studying the locator polynomials of minimum weight codewords of BCH codes. IEEE Trans. Inf. Theory 38(3), 960–973 (1992).

    Article  MathSciNet  Google Scholar 

  4. Augot D., Sendrier N.: Idempotents and the BCH bound. IEEE Trans. Inf. Theory 40(1), 204–207 (1994).

    Article  Google Scholar 

  5. Berlekamp E.R.: The enumeration of information symbols in BCH codes. Bell Syst. Techn. J. 1861–1880 (1967).

  6. Berlekamp E.R.: The weight enumerator of certain subcodes of the second order binary Reed-Muller codes. Inf. Control 17, 485–500 (1970).

    Article  MathSciNet  Google Scholar 

  7. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over \(\text{ GF }(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).

    Article  MathSciNet  Google Scholar 

  8. Cherchem A., Jamous A., Liu H., Maouche Y.: Some new results on dimension and Bose distance for various classes of BCH codes. Finite Fields Appl. 65, 101673 (2020).

    Article  MathSciNet  Google Scholar 

  9. Charpin P.: Open problems on cyclic codes. In: Pless V., Huffman W.C. (eds.) Handbook of Coding Theory, vol. 1, pp. 963–1063. Elsevier, Amsterdam (1998).

    Google Scholar 

  10. Charpin P.: On a class of primitive BCH-codes. IEEE Trans. Inf. Theory 36(1), 222–228 (1990).

    Article  MathSciNet  Google Scholar 

  11. Chen H.: On the Hull-Variation Problem of Equivalent Linear Codes. IEEE Trans. Inf. Theory 69(5), 2911–2922 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  12. Ding C.: Parameters of several classes of BCH codes. IEEE Trans. Inf. Theory 61(10), 5322–5330 (2015).

    Article  MathSciNet  Google Scholar 

  13. Ding C., Du X., Zhou Z.: The Bose and minimum distance of a class of BCH codes. IEEE Trans. Inf. Theory 61(5), 2351–2356 (2015).

    Article  MathSciNet  Google Scholar 

  14. Desaki Y., Fujiwara T., Kasami T.: The weight distributions of extended binary primitive BCH codes of length \(128\). IEEE Trans. Inf. Theory 43(4), 1364–1371 (1997).

    Article  MathSciNet  Google Scholar 

  15. Ding C., Fan C., Zhou Z.: The dimension and minimum distance of two classes of primitive BCH codes. Finite Fields Appl. 45, 237–263 (2017).

    Article  MathSciNet  Google Scholar 

  16. Du Z., Li C., Mesnager S.: Constructions of self-orthogonal codes from Hulls of BCH codes and their parameters. IEEE Trans. Inf. Theory 66(11), 6774–6785 (2020).

    Article  MathSciNet  Google Scholar 

  17. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de, Accessed 18 July 2023.

  18. Gong B., Ding C., Li C.: The dual codes of several classes of BCH codes. IEEE Trans. Inf. Theory 68(2), 953–964 (2022).

    Article  MathSciNet  Google Scholar 

  19. Guenda K., Jitman S., Gulliver T.A.: Constructions of good entanglement assisted quanutm error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018).

    Article  MathSciNet  Google Scholar 

  20. Gan C., Li C., Mesnager S., Qian H.: On hulls of some primitive BCH codes and self-orthogonal codes. IEEE Trans. Inf. Theory 67(10), 6442–6455 (2021).

    Article  MathSciNet  Google Scholar 

  21. Huang Y., Li C., Wang Q., Du Z.: Parameters and characterizations of hulls of some projective narrow-sense BCH codes. Des. Codes Cryptogr. 90, 87–106 (2022).

    Article  MathSciNet  Google Scholar 

  22. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  23. Jin L., Xing C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58(8), 5484–5489 (2011).

    Article  MathSciNet  Google Scholar 

  24. Kasami T., Lin S.: Some results on the minimum weight of BCH codes. IEEE Trans. Inf. Theory 18, 824–825 (1972).

    Article  MathSciNet  Google Scholar 

  25. Li C., Ding C., Li S.: LCD cyclic codes over finite fields. IEEE Trans. Inf. Theory 63(3), 4344–4356 (2017).

    Article  MathSciNet  Google Scholar 

  26. Li S., Li C., Ding C., Liu H.: Two families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017).

    MathSciNet  Google Scholar 

  27. Li S.: The minimum distance of some narrow-sense primitive BCH codes. SIAM J. Discret. Math. 31(4), 2530–2569 (2017).

    Article  MathSciNet  CAS  Google Scholar 

  28. Li S., Ding C., Xiong M., Ge G.: Narrow-sense BCH codes over \(\text{ GF }(q)\) with length \(n=\frac{q^m-1}{q-1}\). IEEE Trans. Inf. Theory 63(11), 7219–7236 (2017).

    Article  Google Scholar 

  29. Lisoněk P., Singh V.: Quantum codes from nearly self-orthogonal quaternary linear codes. Des. Codes Cryptogr. 73, 417–424 (2014).

    Article  MathSciNet  Google Scholar 

  30. Luo G., Cao X., Chen X.: MDS codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019).

    Article  MathSciNet  Google Scholar 

  31. Mann H.B.: On the number of information symbols in Bose-Chaudhuri codes. Inf. Control 5, 153–162 (1962).

    Article  MathSciNet  Google Scholar 

  32. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

    Google Scholar 

  33. Sendrier N.: Finding the permutation between equivalent linear codes: The support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000).

    Article  MathSciNet  Google Scholar 

  34. Sendrier N.: On the dimension of the hull. SIAM J. Discret. Math. 10(2), 282–293 (1997).

    Article  MathSciNet  Google Scholar 

  35. Skersys G.: The average dimension of the hull of cyclic codes. Discret. Appl. Math. 128(1), 275–292 (2003).

    Article  MathSciNet  Google Scholar 

  36. Yue D., Hu Z.: On the dimension and minimum distance of BCH codes over \(\text{ GF }(q)\). J. Electron. 13(3), 216–221 (1996).

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers and the editor for their detailed comments and suggestions that highly improved the presentation and quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Qian.

Ethics declarations

Conflict of interest

The authors declare there are no conflict of interest.

Additional information

Communicated by P. R. J. Ostergard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Chunyu Gan and Chengju Li was supported by the National Natural Science Foundation of China (T2322007, 12071138), and Shanghai Natural Science Foundation (22ZR1419600). The work of Haifeng Qian was supported by the Innovation Program of Shanghai Municipal Education Commission (2021-01-07-00-08-E00101), and “Digital Silk Road” Shanghai International Joint Lab of Trustworthy Intelligent Software (22510750100). The work of Xueying Shi was supported by the National Natural Science Foundation of China (12001396), the Natural Science Foundation of Jiangsu Province of China (BK20200268) and Qing Lan Project of the Jiangsu Higher Education Institutions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, C., Li, C., Qian, H. et al. On Bose distance of a class of BCH codes with two types of designed distances. Des. Codes Cryptogr. (2024). https://doi.org/10.1007/s10623-024-01378-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10623-024-01378-x

Keywords

Mathematics Subject Classification

Navigation