skip to main content
survey

Warm-Starting and Quantum Computing: A Systematic Mapping Study

Authors Info & Claims
Published:25 April 2024Publication History
Skip Abstract Section

Abstract

Due to low numbers of qubits and their error-proneness, Noisy Intermediate-Scale Quantum (NISQ) computers impose constraints on the size of quantum algorithms they can successfully execute. State-of-the-art research introduces various techniques addressing these limitations by utilizing known or inexpensively generated approximations, solutions, or models as a starting point to approach a task instead of starting from scratch. These so-called warm-starting techniques aim to reduce quantum resource consumption, thus facilitating the design of algorithms suiting the capabilities of NISQ computers. In this work, we collect and analyze scientific literature on warm-starting techniques in the quantum computing domain. In particular, we (i) create a systematic map of state-of-the-art research on warm-starting techniques using established guidelines for systematic mapping studies, (ii) identify relevant properties of such techniques, and (iii) based on these properties classify the techniques identified in the literature in an extensible classification scheme. Our results provide insights into the research field and aim to help quantum software engineers to categorize warm-starting techniques and apply them in practice. Moreover, our contributions may serve as a starting point for further research on the warm-starting topic since they provide an overview of existing work and facilitate the identification of research gaps.

REFERENCES

  1. [1] Ash Jordan and Adams Ryan P.. 2020. On warm-starting neural network training. Advances in Neural Information Processing Systems 33 (2020), 38843894.Google ScholarGoogle Scholar
  2. [2] Barkoutsos Panagiotis Kl, Gonthier Jerome F., Sokolov Igor, Moll Nikolaj, Salis Gian, Fuhrer Andreas, Ganzhorn Marc, Egger Daniel J., Troyer Matthias, Mezzacapo Antonio, Stefan Filipp, and Ivano Tavernelli. 2018. Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions. Physical Review A 98, 2 (2018), 022322. Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Barzen Johanna and Leymann Frank. 2022. Continued fractions and probability estimations in Shor’s algorithm: A detailed and self-contained treatise. AppliedMath 2, 3 (2022), 393432. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Baylor Denis, Breck Eric, Cheng Heng-Tze, Fiedel Noah, Foo Chuan Yu, Haque Zakaria, Haykal Salem, Ispir Mustafa, Jain Vihan, Koc Levent, Chiu Yuen Koo, Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti Ramesh, Sudip Roy,Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin Zhang, and Martin Zinkevich. 2017. TFX: A TensorFlow-based production-scale machine learning platform. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 13871395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Bechtold Marvin, Barzen Johanna, Leymann Frank, Mandl Alexander, Obst Julian, Truger Felix, and Weder Benjamin. 2023. Investigating the effect of circuit cutting in QAOA for the MaxCut problem on NISQ devices. Quantum Science and Technology 8, 4, Article 045022 (Sept. 2023). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Beisel Martin, Barzen Johanna, Leymann Frank, Truger Felix, Weder Benjamin, and Yussupov Vladimir. 2022. Configurable readout error mitigation in quantum workflows. Electronics 11, 19 (2022). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Benson Hande Y. and Shanno David F.. 2008. Interior-point methods for nonconvex nonlinear programming: Regularization and warmstarts. Computational Optimization and Applications 40, 2 (2008), 143189.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. [8] Bravyi Sergey, Sheldon Sarah, Kandala Abhinav, Mckay David C., and Gambetta Jay M.. 2021. Mitigating measurement errors in multiqubit experiments. Physical Review A 103, 4 (2021), 042605.Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Cerezo Marco, Arrasmith Andrew, Babbush Ryan, Benjamin Simon C., Endo Suguru, Fujii Keisuke, McClean Jarrod R., Mitarai Kosuke, Yuan Xiao, Cincio Lukasz, and Patrick J. Coles. 2021. Variational quantum algorithms. Nature Reviews Physics 3, 9 (2021), 625644. Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Francesco Paolo Di, Malavolta Ivano, and Lago Patricia. 2017. Research on architecting microservices: Trends, focus, and potential for industrial adoption. In 2017 IEEE International Conference on Software Architecture (ICSA). IEEE, 2130.Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Dyakonov M. I.. 2007. Is fault-tolerant quantum computation really possible. Future Trends in Microelectronics. Up the Nano Creek (2007), 4.Google ScholarGoogle Scholar
  12. [12] Egger Daniel J., Mareček Jakub, and Woerner Stefan. 2021. Warm-starting quantum optimization. Quantum 5 (2021), 479.Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Farhi Edward, Goldstone Jeffrey, and Gutmann Sam. 2014. A Quantum Approximate Optimization Algorithm. (2014). arxiv:quant-ph/1411.4028Google ScholarGoogle Scholar
  14. [14] Galda Alexey, Liu Xiaoyuan, Lykov Danylo, Alexeev Yuri, and Safro Ilya. 2021. Transferability of optimal QAOA parameters between random graphs. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 171180.Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Gavves Efstratios, Mensink Thomas, Tommasi Tatiana, Snoek Cees G. M., and Tuytelaars Tinne. 2015. Active transfer learning with zero-shot priors: Reusing past datasets for future tasks. In Proceedings of the IEEE International Conference on Computer Vision. 27312739.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [16] Gheorghiu Alexandru, Kapourniotis Theodoros, and Kashefi Elham. 2019. Verification of quantum computation: An overview of existing approaches. Theory of Computing Systems 63 (2019), 715808.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. [17] Goemans Michel X. and Williamson David P.. 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 6 (Nov. 1995), 11151145. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Gondzio Jacek. 1998. Warm start of the primal-dual method applied in the cutting-plane scheme. Mathematical Programming 83, 1 (1998), 125143.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. [19] Han Kyoungseok, Nguyen Tam W., and Nam Kanghyun. 2020. Battery energy management of autonomous electric vehicles using computationally inexpensive model predictive control. Electronics 9, 8 (2020). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Hartlep Christian and Henningsson Toivo. 2015. NMPC application using JModelica. org: Features and performance. In Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015. Linköping University Electronic Press, 321327.Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] He Andre, Nachman Benjamin, Jong Wibe A. de, and Bauer Christian W.. 2020. Zero-noise extrapolation for quantum-gate error mitigation with identity insertions. Phys. Rev. A 102 (Jul. 2020), 012426. Issue 1. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] He Xi. 2020. Quantum subspace alignment for domain adaptation. Physical Review A 102, 6 (Dec. 2020), 062403. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Jalali Samireh and Wohlin Claes. 2012. Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM ’12). Association for Computing Machinery, New York, NY, USA, 2938. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Karalekas Peter J., Tezak Nikolas A., Peterson Eric C., Ryan Colm A., Silva Marcus P. da, and Smith Robert S.. 2020. A quantum-classical cloud platform optimized for variational hybrid algorithms. Quantum Science and Technology 5, 2 (Mar. 2020), 024003. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Karumbaiah Shamya, Lan Andrew, Nagpal Sachit, Baker Ryan S., Botelho Anthony, and Heffernan Neil. 2021. Using past data to warm start active machine learning: Does context matter?. In LAK21: 11th International Learning Analytics and Knowledge Conference. 151160.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Kitchenham Barbara, Brereton Pearl, and Budgen David. 2012. Mapping study completeness and reliability-A case study. (2012).Google ScholarGoogle Scholar
  27. [27] Kitchenham Barbara and Charters Stuart. 2007. Guidelines for performing Systematic Literature Reviews in Software Engineering. 2 (01 2007).Google ScholarGoogle Scholar
  28. [28] Kumar Vidhur and Szidon Andrew. 2020. Efficient incorporation of multiple latency targets in the once-for-all network. arXiv preprint arXiv:2012.06748 (2020).Google ScholarGoogle Scholar
  29. [29] LaRose Ryan. 2019. Overview and comparison of gate level quantum software platforms. Quantum 3 (March 2019), 130. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Leymann Frank and Barzen Johanna. 2020. The bitter truth about gate-based quantum algorithms in the NISQ era. Quantum Science and Technology (Sept. 2020), 128. Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Leymann Frank, Barzen Johanna, Falkenthal Michael, Vietz Daniel, Weder Benjamin, and Wild Karoline. 2020. Quantum in the cloud: Application potentials and research opportunities. In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020). SciTePress, 924.Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Lin Ping-Min and Glikson Alex. 2019. Mitigating cold starts in serverless platforms: A pool-based approach. arXiv preprint arXiv:1903.12221 (2019).Google ScholarGoogle Scholar
  33. [33] Lindauer Marius and Hutter Frank. 2018. Warmstarting of model-based algorithm configuration. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Liu Dai, Xu Hongming, Tian Jianyi, Tan Cheng, and Li Yanfei. 2013. Cold and warm start characteristics using HVO and RME blends in a V6 diesel engine. SAE International Journal of Fuels and Lubricants 6, 2 (2013), 478485.Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Manner Johannes, Endreß Martin, Heckel Tobias, and Wirtz Guido. 2018. Cold start influencing factors in function as a service. In 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion). 181188. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Mari Andrea, Bromley Thomas R., Izaac Josh, Schuld Maria, and Killoran Nathan. 2020. Transfer learning in hybrid classical-quantum neural networks. Quantum 4 (2020), 340.Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Perrone Valerio, Jenatton Rodolphe, Seeger Matthias W., and Archambeau Cédric. 2018. Scalable hyperparameter transfer learning. Advances in Neural Information Processing Systems 31 (2018).Google ScholarGoogle Scholar
  38. [38] Petersen Kai, Feldt Robert, Mujtaba Shahid, and Mattsson Michael. 2008. Systematic mapping studies in software engineering. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE’08). BCS Learning & Development Ltd., Swindon, GBR, 6877.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Petersen Kai, Vakkalanka Sairam, and Kuzniarz Ludwik. 2015. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology 64 (2015), 118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] Poloczek Matthias, Wang Jialei, and Frazier Peter I.. 2016. Warm starting Bayesian optimization. In 2016 Winter Simulation Conference (WSC). IEEE, 770781.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. [41] Preskill John. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (Aug. 2018), 79. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Qi Jun and Tejedor Javier. 2021. Classical-to-quantum transfer learning for spoken command recognition based on quantum neural networks. arXiv preprint arXiv:2110.08689 (2021).Google ScholarGoogle Scholar
  43. [43] Ralphs T. K. and Güzelsoy M.. 2006. Duality and warm starting in integer programming. In The Proceedings of the 2006 NSF Design, Service, and Manufacturing Grantees and Research Conference.Google ScholarGoogle Scholar
  44. [44] Shor P. W.. 1994. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science. 124134. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Skolik Andrea, McClean Jarrod R., Mohseni Masoud, Smagt Patrick van der, and Leib Martin. 2021. Layerwise learning for quantum neural networks. Quantum Machine Intelligence 3 (2021), 111.Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Sokoler Leo Emil, Skajaa Anders, Frison Gianluca, Halvgaard Rasmus, and Jørgensen John Bagterp. 2013. A warm-started homogeneous and self-dual interior-point method for linear economic model predictive control. In 52nd IEEE Conference on Decision and Control. IEEE, 36773683.Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Tate Reuben, Farhadi Majid, Herold Creston, Mohler Greg, and Gupta Swati. 2020. Bridging classical and quantum with SDP initialized warm-starts for QAOA. arXiv preprint arXiv:2010.14021 (2020).Google ScholarGoogle Scholar
  48. [48] Tirumala Sreenivas Sremath. 2022. A novel weights of weights approach for efficient transfer learning in artificial neural networks. Procedia Computer Science 212 (2022), 295303.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. [49] Truger Felix, Barzen Johanna, Bechtold Marvin, Beisel Martin, Leymann Frank, Mandl Alexander, and Yussupov Vladimir. 2023. Data Repository for a Systematic Mapping Study on Warm-Starting and Quantum Computing. (2023). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Varela-Vaca Ángel Jesús and Quintero Antonia M. Reina. 2021. Smart contract languages: A multivocal mapping study. ACM Computing Surveys (CSUR) 54, 1 (2021), 138.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. [51] Wang Da, Servin Martin, and Berglund Tomas. 2016. Warm starting the projected Gauss–Seidel algorithm for granular matter simulation. Computational Particle Mechanics 3, 1 (2016), 4352.Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Wang Longhan, Sun Yifan, and Zhang Xiangdong. 2021. Quantum deep transfer learning. New Journal of Physics 23, 10 (Oct. 2021), 103010. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Weigold Manuela, Barzen Johanna, Leymann Frank, and Vietz Daniel. 2021. Patterns for hybrid quantum algorithms. In Proceedings of the 15th Symposium and Summer School on Service-Oriented Computing (SummerSOC 2021). Springer International Publishing, 3451. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  54. [54] Wieringa Roel, Maiden Neil, Mead Nancy, and Rolland Colette. 2006. Requirements engineering paper classification and evaluation criteria: A proposal and a discussion. Requirements Engineering 11, 1 (2006), 102107.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. [55] Wohlin Claes. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering. 110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. [56] Wurtz Jonathan and Lykov Danylo. 2021. The fixed angle conjecture for QAOA on regular MaxCut graphs. arXiv preprint arXiv:2107.00677 (2021).Google ScholarGoogle Scholar
  57. [57] Yildirim E. Alper and Wright Stephen J.. 2002. Warm-start strategies in interior-point methods for linear programming. SIAM Journal on Optimization 12, 3 (2002), 782810.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. [58] Yussupov Vladimir, Breitenbücher Uwe, Leymann Frank, and Wurster Michael. 2019. A systematic mapping study on engineering function-as-a-service platforms and tools. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing (UCC 2019). ACM, 229240. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. [59] Zhao Liping, Alhoshan Waad, Ferrari Alessio, Letsholo Keletso J., Ajagbe Muideen A., Chioasca Erol-Valeriu, and Batista-Navarro Riza T.. 2021. Natural language processing for requirements engineering: A systematic mapping study. ACM Comput. Surv. 54, 3, Article 55 (Apr. 2021), 41 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Warm-Starting and Quantum Computing: A Systematic Mapping Study

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Computing Surveys
            ACM Computing Surveys  Volume 56, Issue 9
            September 2024
            980 pages
            ISSN:0360-0300
            EISSN:1557-7341
            DOI:10.1145/3613649
            • Editors:
            • David Atienza,
            • Michela Milano
            Issue’s Table of Contents

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 25 April 2024
            • Online AM: 13 March 2024
            • Accepted: 7 March 2024
            • Revised: 14 February 2024
            • Received: 10 March 2023
            Published in csur Volume 56, Issue 9

            Check for updates

            Qualifiers

            • survey
          • Article Metrics

            • Downloads (Last 12 months)179
            • Downloads (Last 6 weeks)96

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Full Text

          View this article in Full Text.

          View Full Text