Skip to main content
Log in

PL\({}_{1}\)P: Point-Line Minimal Problems under Partial Visibility in Three Views

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a complete classification of minimal problems for generic arrangements of points and lines in space observed partially by three calibrated perspective cameras when each line is incident to at most one point. This is a large class of interesting minimal problems that allows missing observations in images due to occlusions and missed detections. There is an infinite number of such minimal problems; however, we show that they can be reduced to 140,616 equivalence classes by removing superfluous features and relabeling the cameras. We also introduce camera-minimal problems, which are practical for designing minimal solvers, and show how to pick a simplest camera-minimal problem for each minimal problem. This simplification results in 74,575 equivalence classes. Only 76 of these were known; the rest are new. To identify problems having potential for practical solving of image matching and 3D reconstruction, we present several natural subfamilies of camera-minimal problems as well as compute solution counts for all camera-minimal problems which have fewer than 300 solutions for generic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Our code is available at https://github.com/timduff35/PL1P.

Notes

  1. Under this restriction, in two cameras, the only reduced (camera-)minimal problem is the five-point problem. See Sect. 10 for an explanation.

  2. In birational geometry, dominant maps are analogs of surjective maps.

  3. Since we are testing minimality, being minimal is the positive outcome. See Sect. 13.2 for detailed explanation why false positives cannot occur.

  4. We note that reduced minimal PL\({}_{0}\)Ps are terminal.

  5. A fiber of a map is the preimage over a single point in its codomain.

  6. Our computations described in Sect. 8 verify that actually each of the observed features marked as minimal in Table 6 does appear in some minimal PL\({}_{1}\)P.

References

  • Agarwal, S., Lee, H., Sturmfels, B., & Thomas, R. R. (2017). On the existence of epipolar matrices. International Journal of Computer Vision, 121(3), 403–415. https://doi.org/10.1007/s11263-016-0949-7

    Article  MathSciNet  Google Scholar 

  • Aholt, C., & Oeding, L. (2014). The ideal of the trifocal variety. Mathematics of Computation, 83(289), 2553–2574.

    Article  MathSciNet  Google Scholar 

  • Aholt, C., Sturmfels, B., & Thomas, R. (2013). A Hilbert scheme in computer vision. Canadian Journal of Mathematics, 65(5), 961–988.

    Article  MathSciNet  Google Scholar 

  • Alismail, H. S., Browning, B., & Dias, M. B. (2011). Evaluating pose estimation methods for stereo visual odometry on robots. In The 11th International Conference on Intelligent Autonomous Systems (IAS-11).

  • Barath, D. (2018). Five-point fundamental matrix estimation for uncalibrated cameras. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018, pp. 235–243

  • Barath, D., Toth, T., & Hajder, L. (2017). A minimal solution for two-view focal-length estimation using two affine correspondences. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 2557–2565.

  • Barath, D., & Hajder, L. (2018). Efficient recovery of essential matrix from two affine correspondences. IEEE Transactions on Image Processing, 27(11), 5328–5337.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Bhayani, S., Kukelova, Z., & Heikkilä, J. (2020). A sparse resultant based method for efficient minimal solvers. In Computer Vision and Pattern Recognition (CVPR).

  • Byröd, M., Josephson, K., & Åström, K. (2008). A column-pivoting based strategy for monomial ordering in numerical Gröbner basis calculations. In European Conference on Computer Vision (ECCV) (vol. 5305, pp. 130–143). Springer.

  • Camposeco, F., Sattler, T., & Pollefeys, M. (2016) Minimal solvers for generalized pose and scale estimation from two rays and one point. In ECCV: European Conference on Computer Vision, pp. 202–218

  • Chen, H. H. (1990). Pose determination from line-to-plane correspondences: existence condition and closed-form solutions. In ICCV, pp. 374–378.

  • Dhome, M., Richetin, M., Lapreste, J., & Rives, G. (1989). Determination of the attitude of 3D objects from a single perspective view. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(12), 1265–1278.

  • Duff, T., Kohn, K., Leykin, A., & Pajdla, T. (2019). PLMP: Point-line minimal problems in complete multi-view visibility. In International Conference on Computer Vision (ICCV).

  • Duff, T., Hill, C., Jensen, A., Lee, K., Leykin, A., & Sommars, J. (2018). Solving polynomial systems via homotopy continuation and monodromy. IMA Journal of Numerical Analysis, 39(3), 1421–1446.

    Article  MathSciNet  Google Scholar 

  • Elqursh, A., & Elgammal, A. M. (2011). Line-based relative pose estimation. In Cvpr.

  • Fabbri, R., Giblin, P. J., & Kimia, B. B. (2012). Camera pose estimation using first-order curve differential geometry. In Proceedings of the European Conference in Computer Vision.

  • Fabbri, R., Duff, T., Fan, H., Regan, M., da de Costa Pinho, D., Tsigaridas, E., Wampler, C., Hauenstein, J., Giblin, P. J., & Kimia, B. B. (2023). Trifocal relative pose from lines at points. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(6), 7870–7884.

    Article  PubMed  Google Scholar 

  • Fabbri, R., Giblin, P., & Kimia, B. (2020). Camera pose estimation using first-order curve differential geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3321–3332.

    Article  Google Scholar 

  • Fabbri, R., & Kimia, B. B. (2016). Multiview differential geometry of curves. International Journal of Computer Vision, 120(3), 324–346.

    Article  MathSciNet  Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  • Grayson, D. R., Stillman, M. E. Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  • Hartley, R. I. (1997). Lines and points in three views and the trifocal tensor. International Journal of Computer Vision, 22(2), 125–140.

    Article  Google Scholar 

  • Hartley, R., & Li, H. (2012). An efficient hidden variable approach to minimal-case camera motion estimation. IEEE PAMI, 34(12), 2303–2314.

    Article  Google Scholar 

  • Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge.

    Google Scholar 

  • Hauenstein, J. D., & Rodriguez, J. I. (2019). Multiprojective witness sets and a trace test. To appear in Advances in Geometry. arXiv preprint arXiv:1507.07069

  • Hruby, P., Duff, T., Leykin, A., & Pajdla, T. (2022). Learning to solve hard minimal problems. In Computer vision and pattern recognition (CVPR).

  • Johansson, B., Oskarsson, M., & Åström, K. (2002). Structure and motion estimation from complex features in three views. In ICVGIP 2002, Proceedings of the Third Indian Conference on Computer Vision, Graphics & Image Processing, Ahmadabad, India, December 16–18 (2002).

  • Joswig, M., Kileel, J., Sturmfels, B., & Wagner, A. (2016). Rigid multiview varieties. IJAC, 26(4), 775–788. https://doi.org/10.1142/S021819671650034X

    Article  MathSciNet  Google Scholar 

  • Kahl, F., Heyden, A., & Quan, L. (2001). Minimal projective reconstruction including missing data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(4), 418–424. https://doi.org/10.1109/34.917578

    Article  Google Scholar 

  • Kileel, J. (2017). Minimal problems for the calibrated trifocal variety. SIAM Journal on Applied Algebra and Geometry, 1(1), 575–598.

    Article  MathSciNet  Google Scholar 

  • Kneip, L., Scaramuzza, D., & Siegwart, R. (2011). A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In CVPR: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2969–2976

  • Kneip, L., Siegwart, R., & Pollefeys, M. (2012). Finding the exact rotation between two images independently of the translation. In ECCV: European Conference on Computer Vision, pp. 696–709.

  • Kuang, Y., & Åström, K. (2013a) Stratified sensor network self-calibration from TDOA measurements. In 21st European signal processing conference.

  • Kuang, Y., & Åström, K. (2013b). Pose estimation with unknown focal length using points, directions and lines. In IEEE international conference on computer vision, ICCV 2013, Sydney, Australia, December 1–8, 2013, pp. 529–536

  • Kukelova, Z., Bujnak, M., & Pajdla, T. (2008). Automatic generator of minimal problem solvers. In European conference on computer vision (ECCV).

  • Kukelova, Z., Kileel, J., Sturmfels, B., & Pajdla, T. (2017). A clever elimination strategy for efficient minimal solvers. In Computer vision and pattern recognition (CVPR) IEEE.

  • Larsson, V., Åström, K., & Oskarsson, M. (2017). Efficient solvers for minimal problems by syzygy-based reduction. In 2017 IEEE conference on computer vision and pattern recognition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017, pp. 2383–2392.

  • Larsson, V., Åström, K., & Oskarsson, M. (2017a). Efficient solvers for minimal problems by syzygy-based reduction. In Computer vision and pattern recognition (CVPR).

  • Larsson, V., Åström, K., & Oskarsson, M. (2017b). Polynomial solvers for saturated ideals. In IEEE international conference on computer vision, ICCV 2017, Venice, Italy, October 22–29, 2017, pp. 2307–2316.

  • Larsson, V., Kukelova, Z., & Zheng, Y. (2017c). Making minimal solvers for absolute pose estimation compact and robust. In International conference on computer vision (ICCV).

  • Larsson, V., et. al. (2015). Automatic generator of minimal problems. http://www2.maths.lth.se/matematiklth/personal/viktorl/code/basis_selection.zip

  • Larsson, V., Oskarsson, M., Åström, K., Wallis, A., Kukelova, Z., & Pajdla, T. (2018). Beyond Gröbner bases: Basis selection for minimal solvers. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018, pp. 3945–3954. http://openaccess.thecvf.com/content_cvpr_2018/html/Larsson_Beyond_Grobner_Bases_CVPR_2018_paper.html

  • Leykin, A., Rodriguez, J. I., & Sottile, F. (2018). Trace test. Arnold Mathematical Journal, 4(1), 113–125. https://doi.org/10.1007/s40598-018-0084-3

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Ma, Y., Huang, K., Vidal, R., Kosecka, J., & Sastry, S. (2004). Rank conditions on the multiple-view matrix. International Journal of Computer Vision, 59(2), 115–137.

    Article  Google Scholar 

  • Matas, J., Obdrzálek, S., & Chum, O. (2002). Local affine frames for wide-baseline stereo. In 16th International Conference on Pattern Recognition, ICPR 2002, Quebec, Canada, August 11–15, 2002., pp. 363–366

  • Miraldo, P., Dias, T., & Ramalingam, S. (2018). A minimal closed-form solution for multi-perspective pose estimation using points and lines. In Computer vision: ECCV 2018—15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XVI, pp. 490–507.

  • Miraldo, P., & Araujo, H. (2015). Direct solution to the minimal generalized pose. Cybernetics, IEEE Transactions on, 45(3), 418–429.

    Article  Google Scholar 

  • Mirzaei, F. M., & Roumeliotis, S. I. (2011). Optimal estimation of vanishing points in a manhattan world. In International Conference on Computer Vision (ICCV).

  • Nistér, D., Naroditsky, O., & Bergen, J. (2004). Visual odometry. In Computer vision and pattern recognition (CVPR), pp. 652–659.

  • Nistér, D. (2004). An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6), 756–770.

    Article  PubMed  Google Scholar 

  • Nistér, D., & Schaffalitzky, F. (2006). Four points in two or three calibrated views: Theory and practice. International Journal of Computer Vision, 67(2), 211–231.

    Article  Google Scholar 

  • Oskarsson, M., Åström, K., & Overgaard, N. C. (2001). Classifying and solving minimal structure and motion problems with missing data. In: International Conference on Computer Vision (ICCV), 628–634. IEEE Computer Society. https://doi.org/10.1109/ICCV.2001.10072.

  • Oskarsson, M., Zisserman, A., & Åström, K. (2004). Minimal projective reconstruction for combinations of points and lines in three views. Image and Vision Computing, 22(10), 777–785.

    Article  Google Scholar 

  • Oxley, J. (2022). Matroid theory. In Handbook of the Tutte polynomial and related topics, pp. 44–85. Chapman and Hall/CRC, London.

  • Raguram, R., Chum, O., Pollefeys, M., Matas, J., & Frahm, J. (2013). USAC: A universal framework for random sample consensus. IEEE Transactions on Pattern Analysis Machine Intelligence, 35(8), 2022–2038.

    Article  PubMed  Google Scholar 

  • Ramalingam, S., & Sturm, P. F. (2008). Minimal solutions for generic imaging models. In CVPR: IEEE Conference on Computer Vision and Pattern Recognition.

  • Ramalingam, S., Bouaziz, S., & Sturm, P. (2011). Pose estimation using both points and lines for geo-localization. In ICRA, pp. 4716–4723.

  • Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., & Sivic, J. (2018). Neighbourhood consensus networks

  • Salaün, Y., Marlet, R., & Monasse, P. (2016). Robust and accurate line- and/or point-based pose estimation without manhattan assumptions. In European Conference on Computer Vision (ECCV).

  • Sattler, T., Leibe, B., & Kobbelt, L. (2017). Efficient & effective prioritized matching for large-scale image-based localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(9), 1744–1756.

    Article  PubMed  Google Scholar 

  • Saurer, O., Pollefeys, M., & Lee, G. H. (2015). A minimal solution to the rolling shutter pose estimation problem. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ international conference on, IEEE, pp. 1328–1334

  • Schönberger, J. L., & Frahm, J.-M. (2016). Structure-from-motion revisited. In Conference on computer vision and pattern recognition (CVPR).

  • Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism: Exploring photo collections in 3D. In ACM SIGGRAPH.

  • Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from internet photo collections. International Journal of Computer Vision (IJCV), 80(2), 189–210.

    Article  Google Scholar 

  • Sottile, F. (2001). Enumerative real algebraic geometry. In: Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

  • Stewenius, H., Engels, C., & Nistér, D. (2006). Recent developments on direct relative orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 60, 284–294.

    Article  ADS  Google Scholar 

  • Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., Pajdla, T., Torii, A. (2018). InLoc: Indoor visual localization with dense matching and view synthesis. In CVPR.

  • Trager, M. (2018). Cameras, shapes, and contours: Geometric models in computer vision. (caméras, formes et contours: modèles géométriques en vision par ordinateur). PhD thesis, École Normale Supérieure, Paris, France

  • Trager, M., Ponce, J., & Hebert, M. (2016). Trinocular geometry revisited. International Journal Computer Vision, 120, 134–152.

  • Ventura, J., Arth, C., & Lepetit, V. (2015). An efficient minimal solution for multi-camera motion. In International Conference on Computer Vision (ICCV), pp. 747–755

  • Xia, G., Delon, J., & Gousseau, Y. (2014). Accurate junction detection and characterization in natural images. International Journal of Computer Vision, 106(1), 31–56.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank ICERM (NSF DMS-1439786 and the Simons Foundation grant 507536). We acknowledge: T. Duff and A. Leykin - NSF DMS-1719968 and DMS-2001267, the Algorithms and Randomness Center at Georgia Tech, and the Max Planck Institute for Mathematics in the Sciences in Leipzig; K. Kohn - the Knut and Alice Wallenberg Foundation: WASP (Wallenberg AI, Autonomous Systems and Software Program) AI/Math initiative; T. Pajdla EU Reg. Dev. Fund IMPACT No. CZ.02.1.01/0.0/0.0/15 003/0000468, and EU H2020 SPRING No. 871245 projects at the Czech Institute of Informatics, Robotics and Cybernetics of the Czech Technical University in Prague.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy Duff, Kathlén Kohn, Anton Leykin or Tomas Pajdla.

Additional information

Communicated by Takayuki Okatani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duff, T., Kohn, K., Leykin, A. et al. PL\({}_{1}\)P: Point-Line Minimal Problems under Partial Visibility in Three Views. Int J Comput Vis (2024). https://doi.org/10.1007/s11263-024-01992-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11263-024-01992-1

Keywords

Navigation