Skip to main content
Log in

A time-fractional superdiffusion wave-like equation with subdiffusion possibly damping term: well-posedness and Mittag-Leffler stability

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this article, we focus on the application of the recent notion of time-fractional derivative developed in Sobolev spaces to the study of well-posedness and stability for a time-fractional wave-like equation with superdiffusion and subdiffusion terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    Google Scholar 

  2. Adams, R. A., Founier, J.J.F.: Sobolev Spaces. Elsevier (2003)

  3. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynamics 29, 145–155 (2002). https://doi.org/10.1023/A:1016539022492

    Article  MathSciNet  Google Scholar 

  4. Alikhanov, A.: Boundary value problems for the diffusion equation of the variable order in differential and difference settings. Appl. Math. Comput. 219(8), 3938–3946 (2012). https://doi.org/10.1016/j.amc.2012.10.029

    Article  MathSciNet  Google Scholar 

  5. Al-Homidan, B., Tatar, N.E.: Fractional Timoshenko beam with a viscoelastically damped rotational component. AIMS Mathematics 8(10), 24632–24662 (2023)

    Article  MathSciNet  Google Scholar 

  6. Al-Homidan, B., Tatar, N.: E: Stabilization of a non-linear fractional problem by a non-integer frictional damping and a viscoelastic term. Fractal and Fractional 7(5), 367 (2023). https://doi.org/10.3390/fractalfract7050367

    Article  Google Scholar 

  7. Atanackovic, T., Pilipovic, S., Zorica, D.: A diffusion wave equation with two fractional derivatives of different order. J. Phys. A 40(20), 5319 (2007). https://doi.org/10.1088/1751-8113/40/20/006

    Article  MathSciNet  Google Scholar 

  8. Awad, E.: On the time-fractional Cattaneo equation of distributed order. Physica A 518, 210–233 (2019). https://doi.org/10.1016/j.physa.2018.12.005

    Article  MathSciNet  Google Scholar 

  9. Awad, E., Metzler, R.: Crossover dynamics from superdiffusion to subdiffusion: model and solutions. Fract. Calc. Appl. Anal. 23(1), 55–102 (2020). https://doi.org/10.1515/fca-2020-003

    Article  MathSciNet  Google Scholar 

  10. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2010). https://doi.org/10.1007/978-0-387-70914-7

  11. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A: Math. Gen. 30(27), 7277 (1997). https://doi.org/10.1088/0305-4470/30/21/006

    Article  MathSciNet  Google Scholar 

  12. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, Springer, Berlin (2004). https://doi.org/10.1007/978-3-642-14574-2

  13. El-Sayed, A.M.A.: Fractional-order diffusion-wave equation. Int. J. Theor. Phys. 35, 311–322 (1996). https://doi.org/10.1007/BF02083817

    Article  MathSciNet  Google Scholar 

  14. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer-Verlag (2014), 2nd ed. (2022). https://doi.org/10.1007/978-3-662-61550-8

  15. Gorenflo, R., Luchko, Yu., Yamamoto, M.: Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18(3), 799–820 (2015). https://doi.org/10.1515/fca-2015-0048

    Article  MathSciNet  Google Scholar 

  16. Huang, X., Yamamoto, M.: Well-posedness of initial-boundary value problem for time fractional diffusion-wave equation with time-dependent coefficients. arXiv preprint arXiv:2203.10448 (2022)

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Mathematics Studies, 204, Elsevier, Amsterdam (2006). https://doi.org/10.1016/S0304-0208(06)80005-8

  18. Kubica, A., Ryszewska, K., Yamamoto, M.: Time-fractional Differential Equations: A Theoretical Introduction. Springer, Tokyo (2020). https://doi.org/10.1007/978-981-15-9066-5

  19. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. Journal of Mathematical Analysis and Applications 351(1), 218–223 (2009). https://doi.org/10.1016/j.jmaa.2008.10.018

    Article  MathSciNet  Google Scholar 

  20. Lions, J. L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, 1. Grundlehren der mathematischen Wissenschaften. Springer Berlin, Heidelberg (1972). https://doi.org/10.1007/978-3-642-65161-8

  21. Mainardi, F.: Fractional diffusive waves in viscoelastic solids. In: Wegner, J.L., Norwood, F.R. (eds.) Nonlinear Waves in Solids, pp. 93–97. ASME/AMR, Fairfield (1995)

    Google Scholar 

  22. Nonnenmacher, T.F.: Nonnenmacher, D.J.F.: Towards the formulation of a nonlinear fractional extended irreversible thermodynamics. Acta Physica Hungarica 66, 145-154 (1989). https://doi.org/10.1007/BF03155787

  23. Oldham, K. B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering, 111, Academic Press, San Diego (1974). https://doi.org/10.1007/s10883-010-9090-z

  24. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, 198, Academic Press, San Diego (1999)

  25. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. Journal of Mathematical Analysis and Applications 382(1), 426–447 (2011). https://doi.org/10.1016/j.jmaa.2011.04.058

    Article  MathSciNet  Google Scholar 

  26. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993)

    Google Scholar 

  27. Tatar, N.: E: Mittag-Leffler stability for a fractional viscoelastic telegraph problem. Mathematical Methods in the Applied Sciences 44(18), 14184–14205 (2021). https://doi.org/10.1002/mma.7689

    Article  MathSciNet  Google Scholar 

  28. Tatar, N.E.: Mittag-Leffler stability for a fractional Euler-Bernoulli problem. Chaos, Solitons & Fractals 149, 111077 (2021). https://doi.org/10.1016/j.chaos.2021.111077

    Article  MathSciNet  Google Scholar 

  29. Yamamoto, M.: Fractional calculus and time-fractional differential equations: revisit and construction of a theory. Mathematics 10(5), 698 (2022). https://doi.org/10.3390/math10050698

    Article  Google Scholar 

Download references

Acknowledgements

M. A. Jorge Silva has been partially supported by the CNPq Grant 309929/2022-9. S. B. Pinheiro has been supported by the regular doctorate scholarship from CAPES-Brazil (PICME), Finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Frota.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frota, C.L., Silva, M.A.J. & Pinheiro, S.B. A time-fractional superdiffusion wave-like equation with subdiffusion possibly damping term: well-posedness and Mittag-Leffler stability. Fract Calc Appl Anal 27, 1236–1266 (2024). https://doi.org/10.1007/s13540-024-00249-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-024-00249-5

Keywords

Mathematics Subject Classification

Navigation