Skip to main content
Log in

Strain-gradient finite elasticity solutions to rigid bar pull-out test

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The pull-out test is one of the common experiments to determine the bond strength. When the problem is modeled in the context of linear elasticity for a cylindrical reinforced concrete block, the resulting simplified 1-D model yields so-called pull-out paradox Rezaei et al. (Mech Res Commun 126:104015, 2022) due to extreme concentration of energy near the bar. Since the standard linear elasticity is not able to consider this high values of energy, the problem was investigated by strain-gradient elasticity solution in the work of Rezaei et al. (Mech Res Commun 126:104015, 2022) . In this study, to resolve the paradoxical solution, classical finite (i.e., St.-Venant–Kirchhoff model) and strain-gradient finite elasticity solutions are presented. Each mathematical model, assuming that the material is isotropic, is derived with the principle of minimum potential energy introducing appropriate strain energy. The numerical simulations are performed by the finite element method, and it is showed that numerical solution of each model converges well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Rezaei, N., Barchiesi, E., Timofeev, D., Tran, C.A., Misra, A., Placidi, L.: Solution of a paradox related to the rigid bar pull-out problem in standard elasticity. Mech. Res. Commun. 126, 104015 (2022)

    Article  Google Scholar 

  2. Zīle, E., Zīle, O.: Effect of the fiber geometry on the pullout response of mechanically deformed steel fibers. Cem. Concr. Res. 44, 18–24 (2013)

    Article  Google Scholar 

  3. Breitenbücher, R., Meschke, G., Song, F., Zhan, Y.: Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths. Struct. Concr. 15(2), 126–135 (2014)

    Article  Google Scholar 

  4. Chu, S., Kwan, A.: A new method for pull out test of reinforcing bars in plain and fibre reinforced concrete. Eng. Struct. 164, 82–91 (2018)

    Article  Google Scholar 

  5. Roscini, F., Guadagnini, M.: Bond behavior of steel cords embedded in inorganic mortars. Materials 15(15), 5125 (2022)

    Article  ADS  Google Scholar 

  6. Roscini, F., Guadagnini, M.: Bond behavior of steel cords for SRG systems to cementitious and lime based mortar. Key Eng. Mater. 916, 313–318 (2022)

    Article  Google Scholar 

  7. Tai, Y.-S., El-Tawil, S., Chung, T.-H.: Performance of deformed steel fibers embedded in ultra-high performance concrete subjected to various pullout rates. Cem. Concr. Res. 89, 1–13 (2016)

    Article  Google Scholar 

  8. Yoo, D.-Y., Kim, S., Kim, J.-J., Chun, B.: An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers. Constr. Build. Mater. 206, 46–61 (2019)

    Article  Google Scholar 

  9. Jiang, T., Wu, Z., Huang, L., Ye, H.: Three-dimensional nonlinear finite element modeling for bond performance of ribbed steel bars in concrete under lateral tensions. In. J. Civil Eng. 18, 595–617 (2020)

    Google Scholar 

  10. Seok, S., Haikal, G., Ramirez, J.A., Lowes, L.N., Lim, J.: Finite element simulation of bond-zone behavior of pullout test of reinforcement embedded in concrete using concrete damage-plasticity model 2 (CDPM2). Eng. Struct. 221, 110984 (2020)

    Article  Google Scholar 

  11. Tsiotsias, K., Pantazopoulou, S.: Bond behavior of high-performance fiber reinforced concrete (HPFRC) under direct tension pullout. Eng. Struct. 243, 112701 (2021)

    Article  Google Scholar 

  12. Zhang, N., Wu, Y., Gu, Q., Huang, S., Sun, B., Du, R., Chang, R.: Refined three-dimensional simulation of ribbed bar pull-out tests based on an enhanced peridynamic model. Eng. Struct. 278, 115519 (2023)

    Article  Google Scholar 

  13. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  Google Scholar 

  14. dell’Isola, F., Corte, A.D., Giorgio, I.: Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    Article  MathSciNet  Google Scholar 

  15. Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)

    Article  ADS  Google Scholar 

  16. Yildizdag, M.E., Tran, C.A., Barchiesi, E., Spagnuolo, M., dell’Isola, F., Hild, F.: In: Altenbach, H., Öchsner, A. (eds.) A Multi-disciplinary Approach for Mechanical Metamaterial Synthesis: A Hierarchical Modular Multiscale Cellular Structure Paradigm, pp. 485–505. Springer, Cham (2019)

  17. Ciallella, A., D’Annibale, F., Del Vescovo, D., Giorgio, I.: Deformation patterns in a second-gradient lattice annular plate composed of spira mirabilis fibers. Continuum Mech. Thermodyn., 1–20 (2022)

  18. dell’Isola, F., Steigmann, D.J.: Discrete and Continuum Models for Complex Metamaterials. Cambridge University Press, Cambridge (2020)

  19. Rahali, Y., Giorgio, I., Ganghoffer, J., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  Google Scholar 

  20. Braides, A., Causin, A., Solci, M.: A homogenization result for interacting elastic and brittle media. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2218), 20180118 (2018)

    MathSciNet  ADS  Google Scholar 

  21. Yang, H., Abali, B.E., Timofeev, D., Müller, W.H.: Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis. Continuum Mech. Thermodyn. 32, 1251–1270 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  22. Bilotta, A., Causin, A., Solci, M., Turco, E.: Representative volume elements for the analysis of concrete like materials by computational homogenization. In: Mathematical Modeling in Cultural Heritage: MACH2019, pp. 13–35 (2021). Springer

  23. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2185), 20150790 (2016)

    ADS  Google Scholar 

  24. Giorgio, I., Rizzi, N., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 473(2207), 20170636 (2017)

    MathSciNet  ADS  Google Scholar 

  25. Barchiesi, E., Eugster, S.R., dell’Isola, F., Hild, F.: Large in-plane elastic deformations of bi-pantographic fabrics: asymptotic homogenization and experimental validation. Math. Mech. Solids 25(3), 739–767 (2020)

    Article  MathSciNet  Google Scholar 

  26. Yildizdag, M.E., Ciallella, A., D’Ovidio, G.: Investigating wave transmission and reflection phenomena in pantographic lattices using a second-gradient continuum model. Math. Mech. Solids 28(8), 1776–1789 (2023)

    Article  MathSciNet  Google Scholar 

  27. Yang, Y., Misra, A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012)

    Article  Google Scholar 

  28. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Continuum Mech. Thermodyn. 28, 215–234 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  29. Barchiesi, E., Misra, A., Placidi, L., Turco, E.: Granular micromechanics-based identification of isotropic strain gradient parameters for elastic geometrically nonlinear deformations. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 101(11), 202100059 (2021)

    Article  MathSciNet  Google Scholar 

  30. Placidi, L., Barchiesi, E., Misra, A., Timofeev, D.: Micromechanics-based elasto-plastic-damage energy formulation for strain gradient solids with granular microstructure. Continuum Mech. Thermodyn. 33(5), 2213–2241 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  31. Placidi, L., Barchiesi, E., dell’Isola, F., Maksimov, V., Misra, A., Rezaei, N., Scrofani, A., Timofeev, D.: On a hemi-variational formulation for a 2D elasto-plastic-damage strain gradient solid with granular microstructure. Math. Eng. 5, 1–24 (2022)

    Article  MathSciNet  Google Scholar 

  32. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67, 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  33. Barchiesi, E., Harsch, J., Ganzosch, G., Eugster, S.: Discrete versus homogenized continuum modeling in finite deformation bias extension test of bi-pantographic fabrics. Continuum Mech. Thermodyn., 1–14 (2020)

  34. Yang, H., Timofeev, D., Abali, B.E., Li, B., Müller, W.H.: Verification of strain gradient elasticity computation by analytical solutions. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 101(12), 202100023 (2021)

    Article  MathSciNet  Google Scholar 

  35. De Angelo, M., Yilmaz, N., Yildizdag, M.E., Misra, A., Hild, F., dell’Isola, F.: Identification and validation of constitutive parameters of a Hencky-type discrete model via experiments on millimetric pantographic unit cells. Int. J. Non-Linear Mech. 153, 104419 (2023)

    Article  ADS  Google Scholar 

  36. Spagnuolo, M., Cazzani, A.M.: Contact interactions in complex fibrous metamaterials: a proposal for elastic energy and Rayleigh dissipation potential. Continuum Mech. Thermodyn. 33(4), 1873–1889 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  37. Yildizdag, M.E., Placidi, L., Turco, E.: Modeling and numerical investigation of damage behavior in pantographic layers using a hemivariational formulation adapted for a hencky-type discrete model. Continuum Mech. Thermodyn. 35(4), 1481–1494 (2023)

    Article  ADS  Google Scholar 

  38. Tran, C., Barchiesi, E.: A new block-based approach for the analysis of damage in masonries undergoing large deformations. Continuum Mech. Thermodyn. 35(4), 1625–1654 (2023)

    Article  MathSciNet  ADS  Google Scholar 

  39. Eremeyev, V.A.: On well-posedness of the first boundary-value problem within linear isotropic Toupin–Mindlin strain gradient elasticity and constraints for elastic moduli. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik, 202200474 (2023)

  40. Eremeyev, V.A., Cazzani, A., dell’Isola, F.: On nonlinear dilatational strain gradient elasticity. Continuum Mech. Thermodyn. 33, 1429–1463 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  41. Aydin, G., Yildizdag, M.E., Abali, B.E.: Strain-gradient modeling and computation of 3-D printed metamaterials for verifying constitutive parameters determined by asymptotic homogenization. In: Theoretical Analyses. Computations, and Experiments of Multiscale Materials: A Tribute to Francesco dell’Isola, pp. 343–357. Springer, Cham (2022)

  42. Aydin, G., Sarar, B.C., Yildizdag, M.E., Abali, B.E.: Investigating infill density and pattern effects in additive manufacturing by characterizing metamaterials along the strain-gradient theory. Math. Mech. Solids 27(10), 2002–2016 (2022)

    Article  Google Scholar 

  43. Yang, H., Abali, B.E., Müller, W.H., Barboura, S., Li, J.: Verification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuum. Int. J. Solids Struct. 238, 111386 (2022)

    Article  Google Scholar 

  44. Abali, B.E., Müller, W.H., Eremeyev, V.A.: Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mech. Adv. Mater. Mod. Process. 1(1), 1–11 (2015)

    Article  Google Scholar 

  45. Shekarchizadeh, N., Abali, B.E., Bersani, A.M.: A benchmark strain gradient elasticity solution in two-dimensions for verifying computational approaches by means of the finite element method. Math. Mech. Solids 27(10), 2218–2238 (2022)

    Article  MathSciNet  Google Scholar 

  46. Causin, A., Solci, M.: A singular limit of a family of variational evolutions for a brittle elastic bi-layer. Nonlinear Anal. 231, 112949 (2023)

    Article  MathSciNet  Google Scholar 

  47. Alicandro, R., Braides, A., Cicalese, M., Solci, M.: Discrete Variational Problems with Interfaces. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2023)

  48. dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NR derived the formulations and performed the simulations. NR and MEY wrote the main manuscript. ET, AM, and LP supervised the study. All authors reviewed the manuscript.

Corresponding author

Correspondence to M. Erden Yildizdag.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, N., Yildizdag, M.E., Turco, E. et al. Strain-gradient finite elasticity solutions to rigid bar pull-out test. Continuum Mech. Thermodyn. 36, 607–617 (2024). https://doi.org/10.1007/s00161-024-01285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-024-01285-5

Keywords

Navigation