Skip to main content
Log in

Global existence and completeness of classical solutions in higher dimensional Einstein–Klein–Gordon system

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper we study the global existence and completeness of classical solutions of gravity coupled a scalar field system called Einstein–Klein–Gordon system in higher dimensions. We introduce a new ansatz function to reduce the problem into a single first-order integro-differential equation. Then, we employ the contraction mapping in the appropriate Banach space. Using Banach fixed theorem, we show that there exists a unique fixed point, which is the solution of the theory. For a given initial data, we prove the existence of both local and global classical solutions. We also study the completeness properties of the spacetime. Here, we introduce a mass-like function for \(D\ge 4\) in Bondi coordinates. The completeness of spacetime along the future directed timelike lines outward to a region which resembles the event horizon of the black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  1. Choquet-Bruhat, Y.: Solutions \(C^\infty \) d’equations hyperboliques non lin’eaire. Comptes rendus de l’Académie des Sciences 272, 386–8 (1968)

    Google Scholar 

  2. Chrusciel, P.T.: On the uniqueness in the large of solutions to the Einstein equations (strong cosmic censorship) Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), pp 235–73. American Mathematical Society, Providence (1992)

  3. Friedrich, H., Rendall, A.: The Cauchy problem for the Einstein equations. In: Schmidt, B.G. (eds.) Einstein’s Field Equations and Their Physical Implications. Lecture Notes in Physics, vol. 540. Springer, Berlin, Heidelberg (1999)

  4. Christodoulou, D., Klainerman, S.: The global non-linear stability of the Minkowski space. Princeton Mathematical Series, vol 41. Princeton University Press, Princeton (1993)

  5. Bieri, L.: An extension of the stability theorem of the Minkowski space in general relativity. J. Differ. Geom. 86(1), 17–70 (2010)

    Article  MathSciNet  Google Scholar 

  6. Christodoulou, D.: The problem of a self-gravitating scalar field. Commun. Math. Phys. 105, 337–361 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  7. Christodoulou, D.: Global existence of generalized solutions of the spherically symmetric Einstein–Scalar equations in the large. Commun. Math. Phys. 106, 587–621 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  8. Christodoulou, D.: Examples of naked singularity formation in the gravitational collapse of a scalar field. Ann. Math. 140, 607–653 (1994)

    Article  MathSciNet  Google Scholar 

  9. Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149, 183–217 (1999)

    Article  MathSciNet  Google Scholar 

  10. Malec, E.: Self-gravitating nonlinear scalar fields. J. Math. Phys. 38, 3650 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chae, D.: Global existence of spherically symmetric solutions to the coupled Einstein and nonlinear Klein-Gordon system. Class. Quantum Gravity 18, 4589 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Wijayanto, M.P., Fadhilla, E.S., Akbar, F.T., Gunara, B.E.: Global existence of classical static solutions of four dimensional Einstein-Klein-Gordon system. Gen. Relativ. Gravit. 55, 19 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dafermos, M., Rendall, A.: Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter. Commun. Pure Appl. Math. 69, 815–908 (2016)

    Article  MathSciNet  Google Scholar 

  14. Alho, A., Mena, F.C., Valiente-Kroon, J.: The Einstein-Friedrich-nonlinear scalar field system and the stability of scalar field cosmologies. Adv. Theor. Math. Phys. 21, 857–899 (2017)

    Article  MathSciNet  Google Scholar 

  15. Reiris, M.: On static solutions of the Einstein-Scalar Field equations. Gen. Relativ. Gravit. 49, 46 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Luk, J., Oh, S.J., Yang, S.: Solutions to the Einstein–Scalar–Field system in spherical symmetry with large bounded variation norms. Ann. PDE 4, 3 (2018)

    Article  MathSciNet  Google Scholar 

  17. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rep. 513(1–3), 1–189 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  18. Horowitz, G.T.: Black Holes in Higher Dimensions. Cambridge University Press. ISBN: 978-113900417-6 (2012)

  19. Hollands, S., Ishibashi, A.: Asymptotic flatness and Bondi energy in higher dimensional gravity. J. Math. Phys. 46, 022503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. Coley, A.A.: Mathematical general relativity. Gen. Relativ. Gravit. 51, 78 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ludvigsen, M., Vickers, J.A.G.: The positivity of the Bondi mass. J. Phys. A Math. Gen. 14(10), L389–L391 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bondi, H., van Burg, M.G.J., Metzner, A.W.K.: Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems. In: Proceedings of the Royal Society of London, A269, pp. 21–48 (1962)

Download references

Acknowledgements

The work of this research is supported by PDD Kemendikbudristek 2023, PPMI FMIPA ITB 2023, PPMI KK ITB 2023, and GTA 50 ITB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobby Eka Gunara.

Ethics declarations

Conflict of interest

No conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Estimate for (3.84)

We write the estimate for (3.84) as follows

$$\begin{aligned} |f|\le&\frac{(D-2)}{4r}\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}g-\frac{(D-2)}{2}\tilde{g}\right| \left| \tilde{h}\right| +\frac{8\pi g r}{(D-2)}\left| V(\tilde{h})\right| \left| \tilde{h}\right| +\frac{gr}{2}\left| \frac{\partial V(\tilde{h})}{\partial \tilde{h}}\right| ,\nonumber \\ \le&A_1 + A_2 + A_3 \end{aligned}$$
(5.1)
  1. 1.

    Estimate for \(A_1\)

    First, we calculate

    $$\begin{aligned} |\tilde{h}|\le&\frac{1}{r^{\frac{(D-2)}{2}}}\int _{0}^{r} \frac{\Vert h\Vert _X}{(1+s+u)^{k-1}}\frac{1}{s^{\frac{(4-D)}{2}}}~ \textrm{d}s\nonumber \\ \le&\frac{2x}{(2k-D)}\frac{1}{ (1+u)^{\frac{(2k-D)}{2}}(1+r+u)^{\frac{(D-2)}{2}}}. \end{aligned}$$
    (5.2)

    Then, we obtain

    $$\begin{aligned} \left| h-\frac{(D-2)}{2}\tilde{h}\right| \le&|h| + \left| \frac{(D-2)}{2}\tilde{h}\right| \nonumber \\ \le&\frac{x}{(1+r+u)^{k-1}}+\frac{2x}{(2k-D)}\frac{1}{(1+u)^{\frac{(2k-D)}{2}}(1+r+u)^{\frac{(D-2)}{2}}}\nonumber \\ \le&\frac{Cx}{(1+u)^{\frac{(2k-D)}{2}}(1+r+u)^{\frac{(D-2)}{2}}}. \end{aligned}$$
    (5.3)

    From the above estimate, we get

    $$\begin{aligned} |g(u,r)-g(u,r')|\le&\int _{r'}^{r}\left| \frac{\partial g}{\partial s}(u,s) \right| \textrm{d}s\le \frac{8\pi }{(D-2)} \int _{r'}^{r}\frac{1}{s}\left| h-\frac{(D-2)}{2}\tilde{h}\right| ^2\textrm{d}s\nonumber \\ \le&\frac{8\pi }{(D-2)^2}\frac{x^2}{(1+u)^{2k-D}}\left[ \frac{1}{(1+r'+u)^{D-2}}-\frac{1}{(1+r+u)^{D-2}}\right] , \end{aligned}$$
    (5.4)

    and

    $$\begin{aligned} |(g-\bar{g})(u,r)|\le&\frac{1}{r}\int _{0}^{r}|g(u,r)-g(u,r')|\textrm{d}r'\nonumber \\ \le&\frac{8\pi x^2}{(D-3)(D-2)^2}\frac{1}{(1+u)^{2k-3}(1+r+u)}. \end{aligned}$$
    (5.5)

    Thus

    $$\begin{aligned} \int _{r}^{\infty }\frac{1}{s}\left| h-\frac{(D-2)}{2} \tilde{h}\right| ^2\textrm{d}s\le \frac{x^2}{(D-2) (1+u)^{2k-D}(1+r+u)^{D-2}}, \end{aligned}$$
    (5.6)

    such that we obtain

    $$\begin{aligned} |g (u,r)|=\,&\exp \left[ -\frac{8\pi }{(D-2)}\int _{r}^{\infty }\frac{1}{s} \left| h-\frac{(D-2)}{2}\tilde{h}\right| ^2\textrm{d}s\right] \nonumber \\ \ge&\exp \left[ -\frac{8\pi x^2}{(D-2)^2(1+u)^{2k-D}(1+r+u)^{D-2}}\right] . \end{aligned}$$
    (5.7)

    As a consequence, we can calculate

    $$\begin{aligned} |\bar{g}|\ge |g| + |g-\bar{g}|\ge \frac{8\pi x^2}{(D-3)(D-2)^2}\frac{1}{(1+u)^{2k-3}(1+r+u)}, \end{aligned}$$
    (5.8)

    and

    $$\begin{aligned} \frac{(D-4)}{2}\frac{\hat{R}(\hat{\sigma })}{r^{D-3}} \int _{0}^{r}|\bar{g}|s^{D-4}\textrm{d}s\le \frac{Cx^2}{(1+u)^{2k-3}(1+r+u)}. \end{aligned}$$
    (5.9)

    To proceed, we calculate

    $$\begin{aligned} \frac{8\pi }{r^{D-3}}\int _{0}^{r} gs^{D-2}|V(\tilde{h})|\textrm{d}s\le \frac{Cx^{p+1}}{(1+u)^{k^2-D}(1+r+u)^{D-3}}. \end{aligned}$$
    (5.10)

    Now, we obtain

    $$\begin{aligned} \left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}g-\frac{(D-2)}{2}\tilde{g}\right| \le&|g-\bar{g}| +\frac{(D-4)}{2}\frac{\hat{R}(\hat{\sigma })}{r^{D-3}}\int _{0}^{r}|\bar{g}|s^{D-4}\textrm{d}s\nonumber \\&+\frac{8\pi }{r^{D-3}}\int _{0}^{r} gs^{D-2}|V(\tilde{h})|\textrm{d}s\nonumber \\ \le&\frac{C(x^2+x^{p+1})}{(1+u)^{2k-3}(1+r+u)}. \end{aligned}$$
    (5.11)

    Hence,

    $$\begin{aligned} A_1=\frac{(D-2)}{4r}\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}g- \frac{(D-2)}{2}\tilde{g}\right| \left| \tilde{h}\right| \le \frac{C(x^3+x^{p+2})}{(1+u)^{\frac{6(k-1)-D}{2}}(1+r+u)^{\frac{D+2}{2}}}. \end{aligned}$$
    (5.12)
  2. 2.

    Estimate for \(A_2\)

    Using (1.5) and (1.3), we obtain

    $$\begin{aligned} A_2=\frac{8\pi g r}{(D-2)}\left| V(\tilde{h})\right| |\tilde{h}| \le \frac{Cx^{p+2}}{(1+u)^{\frac{(2k-D)}{2}(k+2)} (1+r+u)^{\frac{(D-2)(k+2)-2}{2}}}. \end{aligned}$$
    (5.13)
  3. 3.

    Estimate for \(A_3\)

    Again, using (1.3) we get

    $$\begin{aligned} A_3=\frac{gr}{2}\left| \frac{\partial V(\tilde{h})}{\partial \tilde{h}}\right| \le \frac{Cx^p}{(1+u)^{\frac{(2k-D)k}{2}}(1+r+u)^{\frac{(D-2)k-2}{2}}}. \end{aligned}$$
    (5.14)

Finally, we obtain

$$\begin{aligned} |f|\le \frac{C(x^3+x^p+x^{p+2})}{(1+u)^{\frac{(2k-D)k}{2}}(1+r+u)^{\frac{(D-2)k-2}{2}}}. \end{aligned}$$
(5.15)

1.2 Estimate for (3.96)

We write the estimate of (3.96) as follows:

$$\begin{aligned} |f_1|\le&\left\{ \left| \frac{1}{2r}\left( \frac{\hat{R}(\hat{\sigma })}{(D-2)}\frac{\partial g}{\partial r}-\frac{(D-2)}{2}\frac{\partial \tilde{g}}{\partial r}\right) \right| +\left| \frac{1}{2r^2}\left( \frac{\hat{R}(\hat{\sigma })}{(D-2)}g -\frac{(D-2)}{2}\tilde{g}\right) \right| \right. \nonumber \\&\left. +\left| \frac{8\pi g r}{(D-2)} \frac{\partial V(\tilde{h})}{\partial \tilde{h}} \frac{\partial \tilde{h}}{\partial r}\right| +\left| \frac{8\pi gV(\tilde{h})}{(D-2)}\right| +\left| \frac{8\pi rV(\tilde{h})}{(D-2)}\frac{\partial g}{\partial r}\right| \right\} \left( \left| \mathcal {F}\right| +\frac{(D-2)}{2}\left| \tilde{h}\right| \right) \nonumber \\&+\left\{ \left| \frac{1}{2r} \left( \frac{\hat{R}(\hat{\sigma })}{(D-2)}g-\frac{(D-2)}{2}\tilde{g}\right) \right| +\left| \frac{8\pi g rV(\tilde{h})}{(D-2)}\right| +\left| \frac{g r }{2}\frac{\partial ^2V(\tilde{h})}{\partial \tilde{h}^2}\right| \right\} \nonumber \\&\left| \frac{\partial \tilde{h}}{\partial r}\right| +\left| \frac{r}{2}\frac{\partial g}{\partial r}+\frac{g}{2}\right| \left| \frac{\partial V(\tilde{h})}{\partial \tilde{h}}\right| \nonumber \\ =\,&(B_1+B_2+B_3+B_4+B_5)\left( \left| \mathcal {F}\right| +\frac{(D-2)}{2}\left| \tilde{h}\right| \right) + (B_6+B_7+B_8)\left| \frac{\partial \tilde{h}}{\partial r}\right| + B_9 \end{aligned}$$
(5.16)
  1. 1.

    Estimate for \(B_1\)

    We use the formula \(\frac{\partial \bar{g}}{\partial r}=\frac{g-\bar{g}}{r}\) to obtain

    $$\begin{aligned} \left| \frac{\partial \tilde{g}}{\partial r}\right| \le&\frac{\hat{R}(\hat{\sigma })}{(D-2)}\frac{|g-\bar{g}|}{r} +\frac{\hat{R}(\hat{\sigma })(D-4)(D-3)}{(D-2)r^{D-2}}\int _{0}^{r}| \bar{g}|s^{D-4}\textrm{d}s+\frac{\hat{R}(\hat{\sigma })(D-4)}{(D-2)}\frac{|\bar{g}|}{r}\nonumber \\&+\frac{(D-3)16\pi }{(D-2)r^{D-2}}\int _{0}^{r} \left| g\right| s^{D-2}\left| V(\tilde{h})\right| \textrm{d}s+\frac{16\pi |g|r\left| V(\tilde{h})\right| }{(D-2)}. \end{aligned}$$
    (5.17)

    The estimate (5.5) yields

    $$\begin{aligned} \frac{|g-\bar{g}|}{r}\le \frac{Cx^2r^{D-4}}{(1+u)^{2k-3}(1+r+u)^{D-2}}. \end{aligned}$$
    (5.18)

    Using (3.24), we get

    $$\begin{aligned} \frac{\hat{R}(\hat{\sigma })(D-4)(D-3)}{(D-2)r^{D-2}} \int _{0}^{r}|\bar{g}|s^{D-4}\textrm{d}s\le \frac{Cx^2}{(1+u)^{2k-3}(1+r+u)^2}, \end{aligned}$$
    (5.19)

    and

    $$\begin{aligned} \frac{(D-4)}{(D-2)}\hat{R}(\hat{\sigma })\frac{1}{r}|\bar{g}|\le \frac{8\pi x^2}{(D-3)(D-2)^2(1+u)^{2k-3}(1+r+u)^2}. \end{aligned}$$
    (5.20)

    Then, using (1.5) we have

    $$\begin{aligned} \frac{(D-3)16\pi }{(D-2)r^{D-2}}\int _{0}^{r} \left| g\right| s^{D-2}\left| V(\tilde{h})\right| \textrm{d}s\le \frac{Cx^{p+1}}{(1+u)^{k^2-D}(1+r+u)^{D-2}}, \end{aligned}$$
    (5.21)

    and

    $$\begin{aligned} \frac{16\pi gr}{(D-2)}|V(\tilde{h})|\le \frac{Cx^{p+1}r}{(1+u)^{\frac{(2k-D) (k+1)}{2}}(1+r+u)^{\frac{(D-2)(k+1)}{2}}}. \end{aligned}$$
    (5.22)

    Thus,

    $$\begin{aligned} \frac{(D-2)}{2}\left| \frac{\partial \tilde{g}}{\partial r} \right| \le \frac{C(x^2+x^{k+1}+x^{p+1})r}{(1+u)^{2k-3}(1+r+u)^3}. \end{aligned}$$
    (5.23)

    Using (1.6) we calculate

    $$\begin{aligned} \ \frac{\hat{R}(\hat{\sigma })}{(D-2)}\left| \frac{\partial g}{\partial r} \right| \le \frac{Cx^2r}{(1+u)^{2k-D}(1+r+u)^{D}}. \end{aligned}$$
    (5.24)

    Finally, we obtain

    $$\begin{aligned} B_1=\left| \frac{1}{2r}\left( \frac{\hat{R}(\hat{\sigma })}{(D-2)} \frac{\partial g}{\partial r}-\frac{(D-2)}{2}\frac{\partial \tilde{g}}{\partial r}\right) \right| \le \frac{C(x^2+x^{k+1}+x^{p+1})}{(1+u)^{2k-D}(1+r+u)^3}. \end{aligned}$$
    (5.25)
  2. 2.

    Estimate for \(B_2\)

    Using (3.27) we obtain

    $$\begin{aligned} B_2=\left| \frac{1}{2r^2}\left( \frac{\hat{R}(\hat{\sigma })}{(D-2)} g-\frac{(D-2)}{2}\tilde{g}\right) \right| \le \frac{C(x^2+x^{p+1})}{(1+u)^{2k-3}(1+r+u)^{3}}. \end{aligned}$$
    (5.26)
  3. 3.

    Estimate for \(B_3\)

    Using the relation \(\left| \frac{\partial \tilde{h}}{\partial r}\right| =\frac{\left| h-\frac{(D-2)}{2}\tilde{h}\right| }{r}\), we get

    $$\begin{aligned} B_3 = \left| \frac{8\pi g r}{(D-2)} \frac{\partial V(\tilde{h})}{\partial \tilde{h}} \frac{\partial \tilde{h}}{\partial r}\right| \le \frac{Cx^{p+1}}{(1+u)^{\frac{(2k-D)(k+1)}{2}}(1+r+u)^{\frac{(D-2)(k+1)}{2}}}. \end{aligned}$$
    (5.27)
  4. 4.

    Estimate for \(B_4\)

    Using (1.3) we obtain

    $$\begin{aligned} B_4=\left| \frac{8\pi g V(\tilde{h})}{(D-2)}\right| \le \frac{C x^{p+1}}{(1+u)^{\frac{(2k-D)(k+1)}{2}}(1+r+u)^{\frac{(D-2)(k+1)}{2}}}. \end{aligned}$$
    (5.28)
  5. 5.

    Estimate for \(B_5\)

    Combination of (1.3) and (3.39) yields

    $$\begin{aligned} B_5 = \left| \frac{8\pi rV(\tilde{h})}{(D-2)}\frac{\partial g}{\partial r}\right| \le \frac{Cx^{p+3}}{(1+u)^{3(2k-D)}(1+r+u)^{\frac{(D-2)(k+3)}{2}}}. \end{aligned}$$
    (5.29)
  6. 6.

    Estimate for \(B_6\)

    Using (3.27) we obtain

    $$\begin{aligned} B_6=\left| \frac{1}{2r} \left( \frac{\hat{R}(\hat{\sigma })}{(D-2)}g- \frac{(D-2)}{2}\tilde{g}\right) \right| \le \frac{C(x^2+x^{p+1})r}{(1+u)^{2k-3}(1+r+u)^{3}}. \end{aligned}$$
    (5.30)
  7. 7.

    Estimate for \(B_7\)

    The estimate (1.3) produces

    $$\begin{aligned} B_7=\left| \frac{8\pi g r V(\tilde{h})}{(D-2)}\right| \le \frac{C x^{p+1}r}{(1+u)^{\frac{(2k-D)(k+1)}{2}}(1+r+u)^{\frac{(D-2)(k+1)}{2}}}. \end{aligned}$$
    (5.31)
  8. 8.

    Estimate for \(B_8\)

    Using (1.3) we have

    $$\begin{aligned} B_8 =\left| \frac{g r }{2}\frac{\partial ^2V(\tilde{h})}{\partial \tilde{h}^2}\right| \le \frac{C x^{p-1}r}{(1+u)^{\frac{(2k-D)(k-1)}{2}}(1+r+u)^{\frac{(D-2)(k-1)}{2}}}. \end{aligned}$$
    (5.32)
  9. 9.

    Estimate for \(B_9\)

    Again, using (1.3) we get

    $$\begin{aligned} B_9 =\left| \frac{r}{2}\frac{\partial g}{\partial r}+\frac{g}{2}\right| \left| \frac{\partial V(\tilde{h})}{\partial \tilde{h}}\right| \le \frac{C x^{p+2}r}{(1+u)^{\frac{(2k-D)(k+1)}{2}}(1+r+u)^{\frac{(D-2)(k+2)+2}{2}}}. \end{aligned}$$
    (5.33)

Finally, we obtain

$$\begin{aligned} |f_1|\le&\frac{C(x^2+x^{k+1}+x^{p+1}+x^{p+3})}{(1+u)^{2k-D} (1+r+u)^3}|\mathcal {F}|+\frac{C(x^3+x^{k+2}+x^{p+2}+x^{p+4})}{(1+u)^{2k-3} (1+r+u)^{\frac{D+4}{2}}}\nonumber \\&+\frac{C(x^3+x^{p}+x^{p+2})r}{(1+u)^{2k-3}(1+r+u)^{\frac{D+4}{2}}}. \end{aligned}$$
(5.34)

1.3 Estimate for (3.103)

We write the estimate of (3.103) as follows:

$$\begin{aligned} |\tilde{\psi }|\le&\frac{1}{2}\left| \tilde{g}_1-\tilde{g}_2\right| |\mathcal {G}_2| +\frac{1}{2r}\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}g_1-\frac{(D-2)}{2} \tilde{g}_1\right| \frac{(D-2)}{2}\left| \tilde{h}_1 -\tilde{h}_2\right| \nonumber \\&+\frac{1}{2r}\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}(g_1-g_2)-\frac{(D-2)}{2} (\tilde{g}_1-\tilde{g}_2)\right| |\mathcal {F}_2|\nonumber \\&+\frac{8\pi r g_2}{(D-2)}\left| V(\tilde{h}_1)-V(\tilde{h}_1)\right| |\mathcal {F}_2|\nonumber \\&+\frac{1}{2r}\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}(g_1-g_2)-\frac{(D-2)}{2} (\tilde{g}_1-\tilde{g}_2)\right| \nonumber \\&\frac{(D-2)}{2}|\tilde{h}_2|+\frac{8\pi r|V(\tilde{h}_1)|}{(D-2)}|g_1-g_2||\mathcal {F}_1|\nonumber \\&+4\pi r|g_1-g_2||\tilde{h}_1| |V(\tilde{h}_1)|+4\pi r g_2|\tilde{h}_1 - \tilde{h}_2||V(\tilde{h}_2)|\nonumber \\&+4\pi r g_2 |\tilde{h}_1|\left| V(\tilde{h}_1)-V(\tilde{h}_2)\right| \nonumber \\&+\frac{r}{2}|g_1-g_2||\tilde{h}_1|\left| \frac{\partial ^2V(\tilde{h}_1)}{\partial \tilde{h}_1^2 }\right| +\frac{r}{2}g_2|\tilde{h}_1-\tilde{h}_2|\left| \frac{\partial ^2V(\tilde{h}_1)}{\partial \tilde{h}_1^2 }\right| \nonumber \\&+\frac{r}{2}g_2|\tilde{h}_1|\left| \frac{\partial ^2V(\tilde{h}_1)}{\partial \tilde{h}_1^2 }-\frac{\partial ^2V(\tilde{h}_2)}{\partial \tilde{h}_2^2 }\right| \nonumber \\ :=\,&D_1+D_2+D_3+\cdots +D_{10}+D_{11}+D_{12} \end{aligned}$$
(5.35)
  1. 1.

    Estimate for \(D_1\)

    Setting \(\Vert h_1-h_2\Vert _Y=y\). Using (1.5) we obtain

    $$\begin{aligned} |\tilde{h}_1 - \tilde{h}_2|\le \frac{2y}{(2k-D)}\frac{1}{(1+u)^{\frac{(2k-D)}{2}}(1+r+u)^{\frac{(D-2)}{2}}}. \end{aligned}$$
    (5.36)

    To proceed, we calculate

    $$\begin{aligned} |h_1-h_2-(\tilde{h}_1-\tilde{h}_2)|\le&|h_1-h_2|+|\tilde{h}_1-\tilde{h}_2|\nonumber \\ \le&\frac{Cy}{(1+u)^{\frac{(2k-D)}{2}}(1+r+u)^{\frac{(D-2)}{2}}}, \end{aligned}$$
    (5.37)

    and

    $$\begin{aligned} \left| |h_1-\tilde{h}_1|^2-|h_2-\tilde{h}_2|^2\right| \le&\left| (h_1-h_2)-(\tilde{h}_1-\tilde{h}_2) \right| \left( |h_1-\tilde{h}_1|+|h_2-\tilde{h}_2|\right) \nonumber \\ \le&\frac{Cxy}{(1+u)^{2k-D}(1+r+u)^{D-2}}. \end{aligned}$$
    (5.38)

    As a consequence, we get

    $$\begin{aligned} |g_1-g_2|\le&\frac{8\pi }{(D-2)} \int _{r}^{\infty } \frac{1}{s}\left| |h_1-\tilde{h}_1|^2-|h_2- \tilde{h}_2|^2\right| \textrm{d}s\nonumber \\ \le&\frac{Cxy}{(1+u)^{(2k-D)}(1+r+u)^{(D-2)}}. \end{aligned}$$
    (5.39)

    Then, we calculate

    $$\begin{aligned} \tilde{h}_1^{p+1} - \tilde{h}_2^{p+1}=(\tilde{h}_1-\tilde{h}_2)\int _{0}^{1} \left( t\tilde{h}_1+(1-t)\tilde{h}_2\right) \left| t\tilde{h}_1+(1-t)\tilde{h}_2\right| ^{p-1}\textrm{d}t, \end{aligned}$$
    (5.40)

    yields

    $$\begin{aligned} \left| \tilde{h}_1^{p+1}-\tilde{h}_2^{p+1}\right| \le&|\tilde{h}_1-\tilde{h}_2|\left( |\tilde{h}_1|+|\tilde{h}_2|\right) ^p\nonumber \\ \le&\frac{2^{2p+1}x^py}{(2k-D)^{k+1}(1+u)^{\frac{(2k-D) (k+1)}{2}}(1+r+u)^{\frac{(D-2)(k+1)}{2}}}. \end{aligned}$$
    (5.41)

    We estimate

    $$\begin{aligned} \frac{16\pi }{(D-2)}\frac{1}{r^{D-3}}\int _{0}^{r} g_1s^{D-2}\left| V(\tilde{h}_1)-V(\tilde{h}_2)\right| \textrm{d}s\le \frac{Cx^py}{(1+u)^{k^2-D}(1+r+u)^{D-3}}. \end{aligned}$$
    (5.42)

    Then, we obtain

    $$\begin{aligned} |\bar{g}_1-\bar{g}_2|\le \frac{1}{r}\int _{0}^{r}|g_1-g_2|\textrm{d}s \le \frac{Cxy}{(1+u)^{2k-3}(1+r+u)}, \end{aligned}$$
    (5.43)

    and

    $$\begin{aligned} \frac{(D-4)}{(D-2)}\frac{\hat{R}(\hat{\sigma })}{r^{D-3}}\int _{0}^{r}\left| \bar{g}_1-\bar{g}_2\right| s^{D-4}\textrm{d}s\le \frac{Cxy}{(1+u)^{2k-3}(1+r+u)}. \end{aligned}$$
    (5.44)

    From the definition (1.7) we get

    $$\begin{aligned} \left| \tilde{g}_1-\tilde{g}_2\right| \le&\frac{\hat{R}(\hat{\sigma })}{(D-2)}\left| \bar{g}_1-\bar{g}_2\right| + \frac{(D-4)}{(D-2)}\frac{\hat{R}(\hat{\sigma })}{r^{D-3}}\int _{0}^{r} \left| \bar{g}_1-\bar{g}_2\right| s^{D-4}\textrm{d}s\nonumber \\&+ \frac{16\pi }{(D-2)}\frac{1}{r^{D-3}}\int _{0}^{r} g_1s^{D-2}\left| V(\tilde{h}_1)-V(\tilde{h}_2)\right| \textrm{d}s\nonumber \\ \le&\frac{Cy(x+x^p)}{(1+u)^{2k-3}(1+r+u)}. \end{aligned}$$
    (5.45)

    Finally, we obtain

    $$\begin{aligned} D_1=\,&\frac{1}{2}|\tilde{g}_1-\tilde{g}_2||\mathcal {G}_2|\le \frac{Cy(x+x^p)}{(1+u)^{2k-3}(1+r+u)}\frac{C\exp \left[ C(x^2+x^{k+1}+x^{p+1})\right] }{\kappa ^k(1+r_1+u_1)^k}\nonumber \\&\times (d+x^3+x^{k+2}+x^p+x^{p+2}+x^{p+4})(1+x^2+x^{k+1}+x^{p+1}+x^{p+3}). \end{aligned}$$
    (5.46)

    Since \(1+r(u)+u\ge \frac{1}{2}\kappa (1+r_1+u_1)\), we have

    $$\begin{aligned} D_1\le \frac{Cy\alpha (x)}{(1+u)^{2k-3}(1+r+u)^{k+1}} \end{aligned}$$
    (5.47)

    where \(\alpha (x)=C(x+x^p)\left( d+x^3+x^{k+2}+x^p+x^{p+2}+x^{p+4}\right) (1+x^2+x^{k+1}+x^{p+1}+x^{p+3})\exp \left[ C(x^2+x^{k+1}+x^{p+1})\right] .\)

  2. 2.

    Estimate for \(D_2\)

    Combining (3.27) and (5.36) we obtain

    $$\begin{aligned} D_2=\frac{1}{2r}\left| \frac{\hat{R}(\hat{\sigma })}{2}g_1- \frac{(D-2)^2}{4}\tilde{g}_1\right| |\tilde{h}_1-\tilde{h}_2|\le \frac{C(x^2+x^{p+1})y}{(1+u)^{\frac{6(k-1)-D}{2}}(1+r+u)^{\frac{D+2}{2}}}. \end{aligned}$$
    (5.48)
  3. 3.

    Estimate for \(D_3\)

    We firstly calculate

    $$\begin{aligned}&\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}(g_1-g_2)-\frac{\hat{R} (\hat{\sigma })}{2}(\bar{g}_1-\bar{g}_2)\right| \nonumber \\&\quad \le \left| g_1-g_2 -(\bar{g}_1-\bar{g}_2) \right| \le \frac{1}{r}\int _{0}^{r}\int _{r'}^{r}\left| \frac{\partial }{\partial r} (g_1-g_2)\right| \textrm{d}s~\textrm{d}r'\nonumber \\&\quad \le \frac{8\pi }{(D-2)r}\int _{0}^{r}\int _{r'}^{r}\frac{1}{s} \left| |h_1-\tilde{h}_1|^2-|h_2-\tilde{h}_2|^2\right| \textrm{d}s~\textrm{d}r'\nonumber \\&\quad \le \frac{Cxy}{r(1+u)^{2k-D}}\int _{0}^{r}\int _{r'}^{r} \frac{\textrm{d}s}{(1+s+u)^{D-1}}\textrm{d}r'\nonumber \\&\quad \le \frac{Cxyr}{(1+u)^{2k-3}(1+r+u)^{D-2}}. \end{aligned}$$
    (5.49)

    Thus,

    $$\begin{aligned}&\frac{1}{2r}\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}(g_1-g_2)-\frac{(D-2)}{2} (\tilde{g}_1-\tilde{g}_2)\right| \nonumber \\&\quad \le \frac{1}{2r}\left[ \left| \frac{\hat{R} (\hat{\sigma })}{(D-2)}(g_1-g_2)-\frac{\hat{R}(\hat{\sigma })}{2}(\bar{g}_1-\bar{g}_2)\right| \right. \nonumber \\&+\frac{(D-4)}{2}\frac{\hat{R}(\hat{\sigma })}{r^{D-3}}\int _{0}^{r} \left| \bar{g}_1-\bar{g}_2\right| s^{D-4}\textrm{d}s\nonumber \\&\qquad \left. +\frac{8\pi }{r^{D-3}} \int _{0}^{r} g_1s^{D-2}\left| V(\tilde{h}_1)-V(\tilde{h}_2)\right| \textrm{d}s\right] \nonumber \\&\quad \le \frac{C(x+x^p)y}{(1+u)^{2k-3}(1+r+u)^{D-2}}. \end{aligned}$$
    (5.50)

    Finally, we obtain

    $$\begin{aligned} D_3=\,&\frac{1}{2r}\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}(g_1-g_2)- \frac{(D-2)}{2}(\tilde{g}_1-\tilde{g}_2)\right| |\mathcal {F}_2|\nonumber \\ \le&\frac{C(x+x^p)y}{(1+u)^{2k-3}(1+r+u)^{D-2}}\frac{C(d+x^3+x^p+x^{p+2}) \exp \left[ C(x^2+x^{p+1})\right] }{\kappa ^{k-1}(1+r_1+u_1)^{k-1}}. \end{aligned}$$
    (5.51)

    Since \(1+r(u)+u\ge \frac{1}{2}\kappa (1+r_1+u_1)\), we have

    $$\begin{aligned} D_3\le \frac{C y \beta (x)}{(1+u)^{2k-3}(1+r+u)^{D+k-3}}, \end{aligned}$$
    (5.52)

    where \(\beta (x)=C(x+x^p)(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] .\)

  4. 4.

    Estimate for \(D_4\)

    Using (1.3) and (3.95) we obtain

    $$\begin{aligned} D_4=\,&\frac{8\pi r g_2}{(D-2)} \left| V(\tilde{h}_1)-V(\tilde{h}_2)\right| |\mathcal {F}_2|\nonumber \\ \le&\frac{Crx^py}{(1+u)^{\frac{(2k-D)(k+1)}{2}}(1+r+u)^{\frac{(D-2)(k+1)}{2}}}\frac{C(d+x^3+x^p+x^{p+2}) \exp \left[ C(x^2+x^{p+1})\right] }{\kappa ^{k-1}(1+r_1+u_1)^{k-1}}. \end{aligned}$$
    (5.53)

    Since \(1+r(u)+u\ge \frac{1}{2}\kappa (1+r_1+u_1)\), we have

    $$\begin{aligned} D_4\le \frac{Cy \gamma (x)}{(1+u)^{2(2k-D)}(1+r+u)^{2(D-2)+1}}, \end{aligned}$$
    (5.54)

    where \(\gamma (x)=C x^p(d+x^3+x^p+x^{p+2})\exp [C(x^2+x^{p+1})].\)

  5. 5.

    Estimate for \(D_5\)

    Combination of (3.83) and (5.50) yields

    $$\begin{aligned} D_5=&\,\frac{1}{2r}\left| \frac{\hat{R}(\hat{\sigma })}{2}(g_1-g_2)- \frac{(D-2)^2}{4}(\tilde{g}_1-\tilde{g}_2)\right| |\tilde{h}_2|\nonumber \\ \le&\,\frac{C(x^2+x^{p+1})y}{(1+u)^{\frac{6(k-1)-D}{2}}(1+r+u)^{\frac{3(D-2)}{2}}}. \end{aligned}$$
    (5.55)
  6. 6.

    Estimate for \(D_6\)

    We calculate

    $$\begin{aligned} D_6=\,&\frac{8\pi r}{(D-2)}|g_1-g_2||V(\tilde{h})||\mathcal {F}_1|\nonumber \\ \le&\frac{8\pi r}{(D-2)}\frac{xy}{(1+u)^{(2k-D)}(1+r+u)^{(D-2)}} \frac{K_0x^{p+1}}{(1+u)^{\frac{(2k-D)(k+1)}{2}}(1+r+u)^{\frac{(D-2)(k+1)}{2}}}\nonumber \\&\times \frac{C(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] }{\kappa ^{k-1}(1+r_1+u_1)^{k-1}}. \end{aligned}$$
    (5.56)

    Since \(1+r(u)+u\ge \frac{1}{2}\kappa (1+r_1+u_1)\), we obtain

    $$\begin{aligned} D_6\le \frac{Cy\sigma (x)}{(1+u)^{3(2k-D)}(1+r+u)^{3(D-2)+k-2}}, \end{aligned}$$
    (5.57)

    where \(\sigma (x)=Cx^{p+2}(d+x^3+x^p+x^{p+2})\exp [C(x^2+x^{p+1})].\)

  7. 7.

    Estimate for \(D_7\)

    We use (1.3) and (3.83) to obtain

    $$\begin{aligned} D_7 = 4\pi r|g_1-g_2||\tilde{h}_1| |V(\tilde{h}_1)| \le \frac{Cyx^{p+3}}{(1+u)^{\frac{7(2k-D)}{2}}(1+r+u)^{\frac{6(2k-D)}{2}}}. \end{aligned}$$
    (5.58)
  8. 8.

    Estimate for \(D_8\)

    Combining (1.3) and (3.49) such that

    $$\begin{aligned} D_8 = 4\pi r g_2|\tilde{h}_1 - \tilde{h}_2||V(\tilde{h}_2)\le \frac{Cyx^{p+1}}{(1+u)^{\frac{5(2k-D)}{2}}(1+r+u)^{2(2k-D)}}. \end{aligned}$$
    (5.59)
  9. 9.

    Estimate for \(D_9\)

    We calculate

    $$\begin{aligned} D_9 = 4\pi r g_2 |\tilde{h}_1|\left| V(\tilde{h}_1)-V(\tilde{h}_2)\right| \le \frac{Cyx^{p+1}}{(1+u)^{\frac{5(2k-D)}{2}}(1+r+u)^{\frac{4(2k-D)}{2}}}. \end{aligned}$$
    (5.60)
  10. 10.

    Estimate for \(D_{10}\)

    Combination of (1.3) and (3.83) yields

    $$\begin{aligned} D_{10}=\frac{r}{2}|g_1-g_2||\tilde{h}_1|\left| \frac{\partial ^2V(\tilde{h}_1)}{\partial \tilde{h}_1^2 }\right| \le \frac{Cyx^{p+1}}{(1+u)^{\frac{5(2k-D)}{2}}(1+r+u)^{2(2k-D)}}. \end{aligned}$$
    (5.61)
  11. 11.

    Estimate for \(D_{11}\)

    Again, we use (1.3) and (3.49) such that

    $$\begin{aligned} D_{11} = \frac{r}{2}g_2|\tilde{h}_1-\tilde{h}_2|\left| \frac{\partial ^2V(\tilde{h}_1)}{\partial \tilde{h}_1^2 }\right| \le \frac{Cyx^{p-1}}{(1+u)^{\frac{3(2k-D)}{2}}(1+r+u)^{D-2}}. \end{aligned}$$
    (5.62)
  12. 12.

    Estimate for \(D_{12}\)

    We calculate

    $$\begin{aligned} \left| \tilde{h}_1^{p-1}-\tilde{h}_2^{p-1}\right| \le&, |\tilde{h}_1-\tilde{h}_2|\left( |\tilde{h}_1|+|\tilde{h}_2|\right) ^{p-2}\nonumber \\ \le&\, \frac{Cyx^{p-2}}{(1+u)^{\frac{(2k-D)(k-1)}{2}}(1+r+u)^{\frac{(D-2)(k-1)}{2}}}. \end{aligned}$$
    (5.63)

    Hence,

    $$\begin{aligned} D_{12}=\frac{r}{2}g_2|\tilde{h}_1|\left| \frac{\partial ^2V(\tilde{h}_1)}{\partial \tilde{h}_1^2 }-\frac{\partial ^2V(\tilde{h}_2)}{\partial \tilde{h}_2^2 }\right| \le \frac{Cyx^{p+1}}{(1+u)^{\frac{3(2k-D)}{2}}(1+r+u)^{D-2}}. \end{aligned}$$
    (5.64)

Finally, we obtain

$$\begin{aligned} |\tilde{\psi }|\le \frac{Cy\left[ \alpha (x)+\beta (x)+\gamma (x)+\sigma (x)+x^2+x^{p-1}+x^{p+1}+x^{p+3}\right] }{(1+u)^{\frac{3(2k-D)}{2}}(1+r+u)^{D-2}} \end{aligned}$$
(5.65)

where \(\alpha (x),\beta (x),\gamma (x),\) and \(\sigma (x)\) are defined in (3.104)–(3.107) respectively.

1.4 Estimate for (3.115)

We write the estimate of (3.115) as follows

$$\begin{aligned} \left| \frac{\partial h}{\partial u}\right| \le&\frac{\tilde{g}}{2}\left| \frac{\partial h}{\partial r}\right| + \frac{1}{2r}\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}g-\frac{(D-2)}{2} \tilde{g}\right| \left| h\right| \nonumber \\&+\frac{(D-2)}{4r}\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}g-\frac{(D-2)}{2}\tilde{g}\right| \left| \tilde{h}\right| \nonumber \\&+\frac{8\pi gr}{(D-2)}\left| h\right| |V(\tilde{h})|+4\pi gr|\tilde{h}||V(\tilde{h})|+\frac{gr}{2}\left| \frac{\partial V(\tilde{h})}{\partial \tilde{h}}\right| \nonumber \\ =\,&H_1+H_2+H_3+H_4+H_5+H_6. \end{aligned}$$
(5.66)
  1. 1.

    Estimate for \(H_1\)

    Using (3.99) we obtain

    $$\begin{aligned} \frac{\tilde{g}}{2}\left| \frac{\partial h}{\partial r}\right| \le \frac{K_1(x)}{\kappa ^{k}(1+r_1+u_1)^{k}}\le \frac{K_1(x)}{(1+r+u)^{k}} \end{aligned}$$
    (5.67)

    where \(K_1(x)=C(d+x^3+x^{k+2}+x^p+x^{p+2}+x^{p+4})(1+x^2+x^{k+1} +x^{p+1}+x^{p+3})\exp \left[ C(x^2+x^{k+1}+x^{p+1})\right] .\)

  2. 2.

    Estimate for \(H_2\)

    Using (3.95) we obtain

    $$\begin{aligned} \frac{1}{2r}\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}g-\frac{(D-2)}{2}\tilde{g} \right| \left| h\right| \le \frac{K_2(x)}{(1+u)^{2k-3}(1+r+u)^{k+1}}, \end{aligned}$$
    (5.68)

    where \(K_2(x)=C(x^2+x^{p+1})(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] .\)

  3. 3.

    Estimate for \(H_3\)

    We use (3.83) and (3.27) to obtain

    $$\begin{aligned} \frac{(D-2)}{4r}\left| \frac{\hat{R}(\hat{\sigma })}{(D-2)}g- \frac{(D-2)}{2}\tilde{g}\right| \left| \tilde{h}\right| \le \frac{C(x^3+x^{p+2})}{(1+u)^{\frac{6(k-1)-D}{2}}(1+r+u)^{\frac{D+2}{2}}}. \end{aligned}$$
    (5.69)
  4. 4.

    Estimate for \(H_4\)

    Combination of (1.3) and (3.95) yields

    $$\begin{aligned} \frac{8\pi gr}{(D-2)}\left| h\right| |V(\tilde{h})|\le \frac{K_3(x)}{(1+u)^{2(2k-D)}(1+r+u)^{2(2k-D)+k-2}}, \end{aligned}$$
    (5.70)

    where \(K_3(x)=Cx^{p+1}(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] .\)

  5. 5.

    Estimate for \(H_5\)

    Combination of (1.3) and (3.83) yields

    $$\begin{aligned} 4\pi gr|\tilde{h}||V(\tilde{h})|\le \frac{Cx^{p+2}}{(1+u)^{\frac{5(2k-D)}{2}}(1+r+u)^{\frac{5(4k-3D+2)-2}{2}}}. \end{aligned}$$
    (5.71)
  6. 6.

    Estimate for \(H_6\)

    Again, from (1.3) we get

    $$\begin{aligned} \frac{gr}{2}\left| \frac{\partial V(\tilde{h})}{\partial \tilde{h}}\right| \le \frac{Cx^p}{(1+u)^{\frac{3(2k-D)}{2}}(1+r+u)^{\frac{3(D-2)}{2}-1}}. \end{aligned}$$
    (5.72)

Finally, we obtain

$$\begin{aligned} \left| \frac{\partial h}{\partial u}\right| \le \frac{C(K_1(x)+K_2(x)+K_3+x^3+x^p+x^{p+2})}{(1+u)^{\frac{3(2k-D)}{2}}(1+r+u)^{\frac{3(D-2)}{2}-1}}, \end{aligned}$$
(5.73)

where \(K_1, K_2,\) and \(K_3\) are defined in (3.116)–(3.118) respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijayanto, M.P., Akbar, F.T. & Gunara, B.E. Global existence and completeness of classical solutions in higher dimensional Einstein–Klein–Gordon system. Gen Relativ Gravit 56, 22 (2024). https://doi.org/10.1007/s10714-024-03212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03212-0

Keywords

Navigation