Skip to main content
Log in

An improved Molodensky-type modification of the Stokes formula and reduced bias in the spectral combination and variance-minimizing ULSM

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A geoid is a reference surface for orthometric height computed by the Stokes integral, and the error caused by truncating the integral into a limit area can be regarded as a bias. Early on, Molodensky modified the Stokes formula by decreasing the numerical size of the truncation coefficient to reduce the bias, and Evans and Featherstone accelerated the bias convergence. In comparison, spectral combination and least-squares modification (LSM) account for terrestrial gravity and Earth gravity model (EGM) errors as a variance in modifying the Stokes formula. However, the spectral combination and unbiased LSM (ULSM) poorly consider the bias when minimizing the variance, and this issue can be overcome by introducing the two bias-reducing methods. A theorem, proven in this study, accelerates the convergence of the truncation coefficient and improves the Molodensky-type modification. The proposed spectral combination with reducing bias (SCRB) and variance-minimizing ULSM with reducing bias (VURB) mitigate the errors of terrestrial gravity and EGMs, and the bias converges faster by the theorem. Considering the internal correlation of gravity anomaly error, the regional solution is also derived for SCRB and VURB for local geoid determination. Additionally, two regularizers introduced in this study avoid the ill-conditioned problems of the coefficient matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

XGM2019e_2159 can be obtained from http://icgem.gfz-potsdam.de/tom_longtime.

References

Download references

Acknowledgements

This work was funded by the National Key R&D Program of China (2022YFC3003402).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Conceptualization and methodology were performed by [LZ] and [QW], and the first draft of the manuscript was written by [LZ]. [QW] supported funding acquisition, and all authors commented on previous manuscript versions. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Qiong Wu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in this paper.

Appendix: Proof of the theorem

Appendix: Proof of the theorem

Proof

Definition the of operator.

$$\begin{array}{c}{\nabla }^{2}=\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(1-{x}^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}{S}_{m}\left(x\right)\right]\end{array}$$
(41a)

and \({\nabla }^{m}{S}_{m}\left(x\right)={\nabla }^{m-2}{\nabla }^{2}{S}_{m}\left(x\right)\), so we can get \({\nabla }^{2}{P}_{n}\left(x\right)={\left[\left(1-{x}^{2}\right){P}_{n}^{\prime}\left(x\right)\right]}^{\prime}=-n\left(n+1\right){P}_{n}\left(x\right)\) and \({\nabla }^{m-1}{S}_{m}\left(t\right)={\nabla }^{m-1}{S}_{m}\left(-1\right)=0\) for \(i=0,1,\dots ,m\). Thus

$$\begin{aligned}{\nabla }^{2k}{P}_{n}\left(x\right)& ={\nabla }^{2k-2}{\nabla }^{2}{P}_{n}\left(x\right)=-n\left(n+1\right){\nabla }^{2k-2}{P}_{n}\left(x\right)\\ &={\left[-n\left(n+1\right)\right]}^{k}{P}_{n}\left(x\right)\end{aligned}$$
(41b)

When \(m\) is an odd number, integrating by parts produces

$$\begin{aligned} & {\int }_{-1}^{t}{\nabla }^{m+1}{S}_{m}\left(x\right){P}_{n}\left(x\right)\text{d}x \\ &\quad =-{\int }_{-1}^{t}\left(1-{x}^{2}\right){\left[{\nabla }^{m-1}{S}_{m}\left(x\right)\right]}^{\prime}{P}_{n}^{\prime}\left(x\right)\text{d}x\\ \\ &\quad ={\int }_{-1}^{t}{\nabla }^{m-1}{S}_{m}\left(x\right){\left[\left(1-{x}^{2}\right){P}_{n}^{\prime}\left(x\right)\right]}^{\prime}\text{d}x \\ &\quad={\int }_{-1}^{t}{\nabla }^{m-1}{S}_{m}\left(x\right){\nabla }^{2}{P}_{n}\left(x\right)\text{d}x\\ \\ &\quad={\int }_{-1}^{t}{S}_{m}\left(x\right){\nabla }^{m+1}{P}_{n}\left(x\right)\text{d}x \\ &\quad={\left[-n\left(n+1\right)\right]}^{\frac{m+1}{2}}{\int }_{-1}^{t}{S}_{m}\left(x\right){P}_{n}\left(x\right)\text{d}x\\ \\ &\quad={\left[-n\left(n+1\right)\right]}^{\frac{m+1}{2}}{Q}_{n}^{m}\end{aligned}$$
(42)

According to Taylor’s theorem,

$$\begin{array}{c}{S}_{m}\left(x\right)=\frac{{\left(x-t\right)}^{m+1}}{\left(m+1\right)!}\frac{{\mathrm{d}}^{m+1}S}{\mathrm{d}{x}^{m+1}}\left({t}_{0}\right)\end{array}$$
(43a)

where \({t}_{0}\in \left(t,x\right)\), we have

$$\begin{array}{c}{\nabla }^{m+1}{S}_{m}\left(x\right)=\frac{{\mathrm{d}}^{m+1}S}{\mathrm{d}{x}^{m+1}}\left({t}_{0}\right)\le \mathrm{max}\left\{\frac{{\mathrm{d}x}^{m+1}S\left(x\right)}{\mathrm{d}{x}^{m+1}}\right\}\end{array}$$
(43b)

Substituting Eq. (43b) into Eq. (42), we obtain

$$\begin{aligned}{Q}_{n}^{m}&={\left[-\frac{1}{n\left(n+1\right)}\right]}^{\frac{m+1}{2}}{\int }_{-1}^{t}{\nabla }^{m+1}{S}_{m}\left(x\right){P}_{n}\left(x\right)\text{d}x \\ & \le \frac{{I}_{n}\left(t\right)}{{n}^{m+1}} \mathrm{max}\left\{\frac{{\mathrm{d}x}^{m+1}S\left(x\right)}{\mathrm{d}{x}^{m+1}}\right\}\end{aligned}$$
(43c)

Therefore, the order of \({Q}_{n}^{m}\) is obtained:

$$\begin{array}{c}{Q}_{n}^{m}\sim O\left({n}^{-m-\frac{5}{2}}\right)\end{array}$$
(44a)

after using

$$\begin{aligned}{I}_{n}\left(t\right) & ={\int }_{-1}^{t}{P}_{n}\left(x\right)\text{d}x=-\frac{1}{n\left(n+1\right)}\left(1-{x}^{2}\right){P}_{n}^{\prime}\left(x\right)\\ & =O\left({n}^{-\frac{3}{2}}\right)\end{aligned}$$
(44b)

with \({P}_{n}^{\prime}\left(x\right)\sim O\left(\sqrt{n}\right)\).

When \(m\) is an even number, integrating by parts yields

$$\begin{aligned}{\int }_{-1}^{t}{\nabla }^{m}{S}_{m}\left(x\right){P}_{n}\left(x\right)\text{d}x & ={\int }_{-1}^{t}{S}_{m}\left(x\right){\nabla }^{m}{P}_{n}\left(x\right)\text{d}x \\ &={\left[-n\left(n+1\right)\right]}^{\frac{m}{2}}{Q}_{n}^{m}\end{aligned} $$
(45a)

We obtain

$$\begin{aligned}{Q}_{n}^{m}&={\left[-\frac{1}{n\left(n+1\right)}\right]}^{\frac{m}{2}}{\int }_{-1}^{t}{\nabla }^{m}{S}_{m}\left(x\right){P}_{n}\left(x\right)\text{d}x \\ &={\left[\frac{-1}{n\left(n+1\right)}\right]}^{\frac{m}{2}}{\int }_{-1}^{t}{\nabla }^{m}{S}_{m}\left(x\right)\text{d}{I}_{n}\left(x\right)\\ & =-{\left[\frac{-1}{n\left(n+1\right)}\right]}^{\frac{m}{2}}{\int }_{-1}^{t}{\left[{\nabla }^{m}{S}_{m}\left(x\right)\right]}^{\prime}{I}_{n}\left(x\right)\text{d}x \\ &\le \frac{{J}_{n}\left(t\right)}{{n}^{m}} \mathrm{max}\left\{\frac{{\mathrm{d}x}^{m+1}S\left(x\right)}{\mathrm{d}{x}^{m+1}}\right\}\end{aligned}$$
(45b)

Therefore, the order of \({Q}_{n}^{m}\) is

$$\begin{array}{c}{\widetilde{Q}}_{n}^{m}\sim O\left({n}^{-m-\frac{5}{2}}\right)\end{array}$$
(46a)

After using

$$\begin{aligned}{J}_{n}\left(t\right)&={\int }_{-1}^{t}{\int }_{-1}^{t}{P}_{n}\left(x\right)\mathrm{d}x\text{d}x\\ &=-\frac{1}{n\left(n+1\right)}{\int }_{-1}^{t}\left(1-{x}^{2}\right){P}_{n}^{\prime}\left(x\right)\text{d}x\\ &=-\frac{2}{n\left(n+1\right)}{\int }_{-1}^{t}x{P}_{n}\left(x\right)\text{d}x\sim O\left({n}^{-\frac{5}{2}}\right)\end{aligned}$$
(46b)

with \({P}_{n}\left(x\right)\sim O\left(1/\sqrt{n}\right)\).

When \(m=-1\), it satisfies \({Q}_{n}^{-1}={Q}_{n}\). The truncation coefficient can be estimated as follows:

$${Q}_{n}={\int }_{-1}^{t}S\left(x\right){P}_{n}\left(x\right)\mathrm{d}x\le {I}_{n}\left(t\right)\mathrm{max}\left\{S\left(x\right)\right\}\sim O\left({n}^{-\frac{3}{2}}\right)$$

Thus, \({Q}_{n}^{m}\sim O\left({n}^{-m-\frac{5}{2}}\right)\) also holds at \(m=-1\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, L., Wu, Q. An improved Molodensky-type modification of the Stokes formula and reduced bias in the spectral combination and variance-minimizing ULSM. J Geod 97, 102 (2023). https://doi.org/10.1007/s00190-023-01786-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-023-01786-2

Keywords

Navigation