Skip to main content
Log in

Influence of dislocations on equilibrium stability of nonlinearly elastic cylindrical tube with hydrostatic pressure

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The phenomenon of buckling of a nonlinearly elastic hollow circular cylinder with dislocations under the action of hydrostatic pressure is studied. The tensor field of the density of continuously distributed dislocations is assumed to be axisymmetric. The subcritical state is described by a system of nonlinear ordinary differential equations. To search for equilibrium positions that differ little from the subcritical state, the bifurcation method is used. Within the framework of the model of a compressible semi-linear (harmonic) material, the critical pressure at which the loss of stability occurs is determined, and the buckling modes are investigated. The effect of edge dislocations on the equilibrium bifurcation is analyzed. It is shown that the loss of stability can also occur in the absence of an external load, i.e., due to internal stresses caused by dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Berdichevsky, V.L., Sedov, L.I.: Dynamic theory of continuously distributed dislocations. Its relation to plasticity theory. Prikl. Mat. Mekh. 31(6), 989–1006 (1967)

    Google Scholar 

  2. Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A: Math., Phys. Eng. Sci. A231, 263–273 (1955)

    ADS  MathSciNet  Google Scholar 

  3. Biot, M.A.: Mechanics of Incremental Deformations. Wiley, New York (1965)

    Book  Google Scholar 

  4. Chen, Y.C., Haughton, D.: Stability and bifurcation of inflation of elastic cylinders. Proc. R. Soc. Lond. 459, 137–156 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. Clayton, J.D.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    Book  Google Scholar 

  6. Derezin, S.V., Zubov, L.M.: Disclinations in nonlinear elasticity. Ztsch. Angew. Math. Mech. 91, 433–442 (2011)

    Article  MathSciNet  Google Scholar 

  7. Eremeyev, V.A., Freidin, A.B., Pavlyuchenko, V.N., et al.: Instability of hollow polymeric microspheres upon swelling. Dokl. Phys. 52, 37–40 (2007)

    Article  ADS  Google Scholar 

  8. Eremeyev, V.A., Cloud, M.J., Lebedev, L.P.: Applications of Tensor Analysis in Continuum Mechanics. World Scientific, NJ (2018)

    Book  Google Scholar 

  9. Ericksen, J.L.: Equilibrium of bars. J. Elast. 5(3–4), 191–201 (1975)

    Article  MathSciNet  Google Scholar 

  10. Eshelby, J.D.: The continuum theory of lattice defects. In: Seitz, D.T.F. (ed.) Solid State Physics, vol. 3, pp. 79–144. Academic Press, New York (1956)

    Google Scholar 

  11. Fu, Y.B., Ogden, R.W.: Nonlinear stability analysis of pre-stressed elastic bodies. Contin. Mech. Thermodyn. 11, 141–172 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Goloveshkina, E.V., Zubov, L.M.: Universal spherically symmetric solution of nonlinear dislocation theory for incompressible isotropic elastic medium. Arch. Appl. Mech. 89(3), 409–424 (2019)

    Article  ADS  Google Scholar 

  13. Goloveshkina, E.V., Zubov, L.M.: Equilibrium stability of nonlinear elastic sphere with distributed dislocations. Contin. Mech. Therm. 32(6), 1713–1725 (2020)

    Article  MathSciNet  Google Scholar 

  14. Green, A.E., Adkins, J.E.: Large Elastic Deformations and Non-linear Continuum Mechanics. Clarendon Press, Oxford (1960)

    Google Scholar 

  15. Guz, A.: Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies. Springer, Berlin (1999)

    Book  Google Scholar 

  16. Haughton, D., Ogden, R.: Bifurcation of inflated circular cylinders of elastic material under axial loading—I. Membrane theory for thin-walled tubes. J. Mech. Phys. Solids 27(3), 179–212 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  17. Haughton, D., Ogden, R.: Bifurcation of inflated circular cylinders of elastic material under axial loading—II. Exact theory for thick-walled tubes. J. Mech. Phys. Solids 27(5), 489–512 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  18. John, F.: Plane strain problems for a perfectly elastic material of harmonic type. Commun. Pure Appl. Math. 13, 239–296 (1960)

    Article  MathSciNet  Google Scholar 

  19. Kondo, K.: On the geometrical and physical foundations in the theory of yielding. In: Proc. 2nd Jap. Nat. Congress of Appl. Mechanics, Tokyo, pp. 41–47 (1952)

  20. Kröner, E.: Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)

    Article  MathSciNet  Google Scholar 

  21. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, Theoretical Physics, vol. 7. Pergamon, Oxford (1975)

    Google Scholar 

  22. Lastenko, M.S., Zubov, L.M.: A model of neck formation on a rod under tension. Rev. Colomb. Mat. 36(1), 49–57 (2002)

    MathSciNet  Google Scholar 

  23. Le, K., Stumpf, H.: A model of elastoplastic bodies with continuously distributed dislocations. Int. J. Plast 12(5), 611–627 (1996)

    Article  Google Scholar 

  24. Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, NJ (2010)

    Book  Google Scholar 

  25. Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)

    Google Scholar 

  26. Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005)

    Book  Google Scholar 

  27. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953)

    Article  Google Scholar 

  28. Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)

    Google Scholar 

  29. Sensenig, C.B.: Instability of thick elastic solids. Commun. Pure Appl. Math. 17(4), 451–491 (1964)

    Article  MathSciNet  Google Scholar 

  30. Spector, S.J.: On the absence of bifurcation for elastic bars in uniaxial tension. Arch. Ration. Mech. Anal. 85(2), 171–199 (1984)

    Article  MathSciNet  Google Scholar 

  31. Teodosiu, C.: Elastic Models of Crystal Defects. Springer, Berlin (2013)

    Google Scholar 

  32. Truesdell, C.: A First Course in Rational Continuum Mechanics. Academic Press, New York (1977)

    Google Scholar 

  33. Vakulenko, A.A.: The relationship of micro- and macroproperties in elastic-plastic media (in Russian). Itogi Nauki Tekh., Ser.: Mekh. Deform. Tverd. Tela 22(3), 3–54 (1991)

    Google Scholar 

  34. Zelenin, A.A., Zubov, L.M.: Supercritical deformations of the elastic sphere. Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela (Proc. Acad. Sci. USSR. Mech. solids) 5, 76–82 (1985)

    Google Scholar 

  35. Zelenin, A.A., Zubov, L.M.: Bifurcation of solutions of statics problems of the non-linear theory of elasticity. J. Appl. Math. Mech. 51(2), 213–218 (1987)

    Article  MathSciNet  Google Scholar 

  36. Zelenin, A.A., Zubov, L.M.: The behaviour of a thick circular plate after stability loss. Prikl. Mat. Mech. 52(4), 642–650 (1988)

    MathSciNet  Google Scholar 

  37. Zubov, L.M., Karyakin, M.I.: Tensor calculus (in Russian). Vuzovskaya kniga, M. (2006)

  38. Zubov, L.M., Moiseyenko, S.I.: Stability of equilibrium of an elastic sphere turned inside out. Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela (Proc. Acad. Sci. USSR. Mech. solids) 5, 148–155 (1983)

    Google Scholar 

  39. Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)

    Google Scholar 

  40. Zubov, L.M.: Continuously distributed dislocations and disclinations in nonlinearly elastic micropolar media. Dokl. Phys. 49(5), 308–310 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  41. Zubov, L.M.: The continuum theory of dislocations and disclinations in nonlinearly elastic micropolar media. Mech. Solids 46(3), 348–356 (2011)

    Article  ADS  Google Scholar 

  42. Zubov, L.M., Rudev, A.N.: On the peculiarities of the loss of stability of a non-linear elastic rectangular bar. Prikl. Mat. Mech. 57(3), 65–83 (1993)

    MathSciNet  Google Scholar 

  43. Zubov, L.M., Rudev, A.N.: The instability of a stretched non-linearly elastic beam. Prikl. Mat. Mech. 60(5), 786–798 (1996)

    MathSciNet  Google Scholar 

  44. Zubov, L.M., Sheidakov, D.N.: Instability of a hollow elastic cylinder under tension, torsion, and inflation. Trans ASME J. Appl. Mech. 75(1), 0110021–0110026 (2008)

    Article  Google Scholar 

  45. Zubov, L.M., Sheydakov, D.N.: The effect of torsion on the stability of an elastic cylinder under tension. Prikl. Mat. Mech. 69(1), 53–60 (2005)

    Google Scholar 

Download references

Acknowledgements

The reported study was funded by the Russian Science Foundation, Project Number 23-21-00123, https://rscf.ru/en/project/23-21-00123/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya V. Goloveshkina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goloveshkina, E.V., Zubov, L.M. Influence of dislocations on equilibrium stability of nonlinearly elastic cylindrical tube with hydrostatic pressure. Continuum Mech. Thermodyn. 36, 27–40 (2024). https://doi.org/10.1007/s00161-023-01255-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-023-01255-3

Keywords

Navigation