Skip to main content

Advertisement

Log in

PC Index as a Ground-Based Indicator of the Solar Wind Energy Incoming into the Magnetosphere: (2) Relation of PC Index to Magnetic Disturbances

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The paper summarizes the issues related to relationships between the PC index and magnetic disturbances: threshold level of the PC index required for the disturbances beginning, delay time in response of magnetic substorms and storms to the PC index growth, relation of PC index to magnetospheric field-aligned currents in course of substorm, different types of magnetic substorms (isolated, expanded, delayed, sawtooth) and magnetic storms (classic, pulsed and composite) and their relation to different regularities in the PC index alterations, linear dependence of the substorm and storm intensities on value of the preceding of PC index, special features of magnetic activity in the winter and summer polar caps, variations of PC index and magnetic disturbances in course of the 23/24 solar activity cycles. New aspects that have arisen due to the PC index application are concerned with the threshold-dependent mode of the substorm development and regular repeateness of sawtooth substorms occurring under conditions of steady powerful EKL field. The experimental results examined in the paper are indicative that the PC index serves as an indicator of the solar wind energy which comes in the magnetosphere and then realizes in the form of magnetosphere disturbances. This paper follows the review of Troshichev (Front Astron Space Sci 9:1069470, 2022), where the relationships between the solar wind electric field EKL and PC index have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adhikari B, Baruwal P, Chapagain NP (2017) Analysis of supersubstorm events with reference to polar cap potential and polar cap index. Earth Space Sci 4:2–15. https://doi.org/10.1002/2016EA000217

    Article  Google Scholar 

  • Adhikari B, Dahal S, Sapkota N, Baruwal P, Bhattarai B, Khanal K, Chapagain NP (2018) Field-aligned current and polar cap potential and geomagnetic disturbances: a review of cross-correlation analysis. Earth Space Sci 5:440–455. https://doi.org/10.1029/2018EA000392

    Article  Google Scholar 

  • Akasofu S-I (1968) Polar and magnetic substorms. Holland, Dordrecht

    Book  Google Scholar 

  • Akasofu SI (1981) Energy coupling between the solar wind and the magnetosphere. Space Sci Rev 28:121

    Article  Google Scholar 

  • Armstrong JC, Zmuda AJ (1970) Field-aligned currents at 1100 kmin the auroral region measured by satellite. J Geophys Res 75:7122–7127

    Article  Google Scholar 

  • Baker DN, Akasofu S-I, Baumjohann W, Bieber JW, Fairfield DH, Hones EW et al (1984) Substorms in the magnetosphere. In: Butler, Papadopoulos (eds) Solar-terrestrial physics—present and future. NASA, Washington

    Google Scholar 

  • Bartels J (1932) Terrestrial-maghetic activity and its relations to solar phenomena. Terr Magn Atmos Electr 37:1–52

    Article  Google Scholar 

  • Belian RD, Gisler GR, Cayton T, Christensen R (1992) High-Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989. J Geophys Res 97(A11):16897–16906. https://doi.org/10.1029/92JA01139

    Article  Google Scholar 

  • Belian RD, Cayton TE, Reeves GD (1995) Quasi-periodic, substorm-associated, global flux variations observed at geosynchronous orbit. In: Ashour-Abdalla M, Chang T, Dusenberry P (eds) Space plasmas: coupling between small and medium scale processes, vol 86. Geophysical monograph series. AGU, Washington, p 143

    Chapter  Google Scholar 

  • Birkeland K (1908) The Norwegian aurora polaris expedition 1902–1903, vol 1. Christiania.

  • Chapman S, Ferraro VC (1932) A new theory of magnetic storms. Terr Magn Atmos Electr 37:147–156

    Article  Google Scholar 

  • Clauer CR, Cai X, Welling D, DeJong A, Henderson MG (2006) Characterizing the 18 April 2002 storm-time sawtooth events using ground magnetic data. J Geophys Res 111:A04S90. https://doi.org/10.1029/2005JA011099

    Article  Google Scholar 

  • Foster JG, Fairfield DH, Ogilvie KW, Rosenberg TJ (1971) Relationship of interplanetary parameters and occurrence of magnetospheric substorms. J Geophys Res 76:6971–6975

    Article  Google Scholar 

  • Fukushima N (1969) Equivalence in ground geomagnetic effect of Chapman-Vestine’s and Birkeland-Alfven’s electric current-systems for polar magnetic storms. Rep Ionos Space Res Jpn 23:219–227

    Google Scholar 

  • Gizler VA, Semenov VS, Troshichev OA (1979) The electric fields and currents in the ionosphere generated by field-aligned currents observed by TRIAD. Planet Space Sci 27:223–231

    Article  Google Scholar 

  • Gjerloev JW, Hoffman RA et al (2003) Auroral electrojet configuration during substorm growth phase. Geophys Res Lett 30(18):1927. https://doi.org/10.1029/2003GL017851

    Article  Google Scholar 

  • Henderson MG, Skoug R, Donovan E, Thomsen MF, Reeves GD et al (2006) Substorm during the 10 August 2000 sawtooth event. J Geophys Res 111:A06206. https://doi.org/10.1029/2005JA011366

    Article  Google Scholar 

  • Horwitz JL, Doupnik JR, Banks PM (1978) Chatanika radar observations of the latitudinal distributions of auroral zone electric fields, conductivities and currents. J Geophys Res 83:1463–1481

    Article  Google Scholar 

  • Huang CS, Reeves GD, Borovsky JE, Skoug RV, Pu ZY, Le G (2003) Recurrent magnetospheric substorms and their relationship with solar wind variations. J Geophys Res 108:1255. https://doi.org/10.1029/2002JA009704

    Article  Google Scholar 

  • IAGA resolution (2021) www.iaga-aiga.org/resolutions/resolution-no-2-2021-polar-cap-pc-index/

  • IAGA Resolution N 3 (2013) Retrieved from http://www.iaga-aiga.org/resolutions

  • Iijima T, Potemra TA (1976a) The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J Geophys Res 81:2165–2174

    Article  Google Scholar 

  • Iijima T, Potemra TA (1976b) Field-aligned currents in the day-side cusp observed by Triad. J Geophys Res 81:5971–5979

    Article  Google Scholar 

  • Iijima T, Fujii R, Potemra TA, Saflekos TA (1978) Field-aligned currents in the south polar cusp and their relationship to the interplanetary magnetic field. J Geophys Res 83:5595–5603

    Article  Google Scholar 

  • Iyemori T, Takeda M, Nose M, Odagi Y, Toh H (2010) Mid-latitude geomagnetic indices ASY and SYM for 2009 (provisional). Internal Report of Data Analysis Cener for Geomagnetism and Space Magnetism, Kyoto University, Japan

  • Janzhura A, Troshichev O, Stauning P (2007) Unified PC indices: Relation to the isolated magnetic substorms. J Geophys Res 112:A09207. https://doi.org/10.1029/2006JA012132

    Article  Google Scholar 

  • Jian L (2015) List of stream interaction regions (SIR) for 1995–2009 (Catalogue)

  • Kamide Y, Baumjohann W (1993) Magnetosphere-ionosphere coupling. Springer, Berlin

    Book  Google Scholar 

  • Kan JR, Lee LC (1979) Energy coupling function and solar wind-magnetosphere dynamo. Geophys Res Lett 6:577

    Article  Google Scholar 

  • Kitamura K, Kawano H, Ohtani S, Yoshikawa A, Yomoto K (2005) Local-time distribution of low and middle latitude ground magnetic disturbances at sawtooth injections of April 18–19, 2002. J Geophys Res 110:A07208. https://doi.org/10.1029/2004JA010734

    Article  Google Scholar 

  • Kullen A, Karlsson T, Cumnock JA, Sundberg T (2010) Occurrence and properties of substorms associated with pseudobreakups. J Geophys Res 115:A12310. https://doi.org/10.1029/2010JA015866

    Article  Google Scholar 

  • Kurazhkovskaya NA (2020) Global disturbance of Earth’s magnetosphere and its connection with space weather. Solnechno-Zemnaya Fizika 6:1. https://doi.org/10.12737/szf-61202005

    Article  Google Scholar 

  • Li H, Wang C, Peng Z (2013) Solar wind impact on growth phase duration and substorm intensity: a statistical approach. J Geophys Res 118:4270–4278. https://doi.org/10.1002/jgra.50399

    Article  Google Scholar 

  • Liou K, Carbary JF, Newell PT, Meng C-I, Rasmussen O (2003) Correlation of auroral power with the polar cap index. J Geophys Res 108:1108. https://doi.org/10.1029/2002JA009556

    Article  Google Scholar 

  • Lühr H, Park J, Gjerloev JW, Rauberg J, Michaelis I, Merayo JMG, Brauer P (2015a) Field-aligned currents’ scale analysis performed with the swarm constellation. Geophys Res Lett 42:1–8. https://doi.org/10.1002/2014GL062453

    Article  Google Scholar 

  • Lühr H, Kervalishvili G, Michaelis I, Rauberg J, Ritter P, Park J, Merayo JMG, Brauer P (2015b) The inter-hemispheric and F-region dynamo currents revisited with the Swarm constellation. Geophys Res Lett 42:3069–3075. https://doi.org/10.1002/2015GL063662

    Article  Google Scholar 

  • Lui ATY, Hori T, Ohtani S, Zhang Y, Zhou XY, Henderson MG et al (2004) Magnetotail behavior during storm time “sawtooth injections.” J Geophys Res 109:A10215. https://doi.org/10.1029/2004JA010543

    Article  Google Scholar 

  • McIntosh DH (1959) On the annual variation of magnetic disturbances. Philos Trans R Soc A251:525–552

    Google Scholar 

  • Meier MM, Belian RD, Cayton TE, Christensen RA, Garcia B, Grace KM et al (1996) The energy spectrometer for particles (esp): instrument description and orbital performance. In: Reeves GD (ed) Workshop on the earth's trapped particle environment, AIP conference proceedings, vol 383, pp. 203–210, Am. Inst. Phys, New York. https://doi.org/10.1063/1.51533

  • Mende S, Heetderks H, Frey Hu, Lampton M, Geller S et al (2000) Far ultraviolet imaging from the IMAGE. Space Sci Rev 91(1–2):243–270. https://doi.org/10.1023/A:1005271728567

    Article  Google Scholar 

  • Petrukovich AA (2000) The growth phase: comparison of small and large substorms. In: Proceedings of Fifth international conference on substorms, St. Petersburg, Russia, 2000 (ESA SP-443), pp 9–14

  • Richardson I, Cane H (2015) List of near-earth interplanetary coronal mass ejections (ICME) for 1997–2015 (Catalogue)

  • Ritter P, Lühr H, Rauberg J (2013) Determining field-aligned currents with the Swarm constellation mission. Earth Planets Space 65:1285–1294. https://doi.org/10.5047/eps.2013.09.006

    Article  Google Scholar 

  • Robinson RM, Bering EA, Vondrack RR, Anderson HR, Cloutier PA (1981) Simultaneous rocket and radar measurementsof currents in an auroral arc. J Geophys Res 86:7703–7717

    Article  Google Scholar 

  • Rostoker G, Akasofu SI, Baumjohann W, Kamide Y, McPherron RL (1987) The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms. Space Sci Rev 46:93

    Google Scholar 

  • Russell CT, McPherron RL (1973) The magnetotail and substorms. Space Sci Rev 15:205–266

    Article  Google Scholar 

  • Stepanova M, Antonova E, Troshichev O (2005) Prediction of Dst variations from Polar Cap indices using time-delay neural network. J Atmos Sol Terr Phys 67:1658–1664

    Article  Google Scholar 

  • Sugiura M, Chapman S (1960) The average morphology of geomagnetic storms with sudden commencement. Abhandlungen der Akademie der Wissenschaften, Gottingen. Mathematisch-Physikalische Klasse. Sonderheft 4. Gottingen

  • Takalo J, Timonen J (1998) On the relation of the AE and PC indices. J Geophys Res 103:29393

    Article  Google Scholar 

  • Tanskanen E, Pulkkinen TI, Koskinen HEJ, Slavin JA (2002) Substorm energy budget during low and high solar activity: 1997 and 1999 compared. J Geophys Res 107(A6):1086. https://doi.org/10.1029/2001JA900153

    Article  Google Scholar 

  • Troshichev OA (1982) Polar magnetic disturbances and field-aligned currents. Space Sci Rev 32:275–360

    Article  Google Scholar 

  • Troshichev OA (2017) Polar cap magnetic activity (PC index) and space weather monitoring. Editions Universitaires Europeennes. ISBN 978–3–8381–8012–0

  • Troshichev OA (2022) PC index as a ground-based indicator of the solar wind energy incoming into the magnetosphere: (1) relation of PC index to the solar wind electric field EKL. Front Astron Space Sci 9:1069470. https://doi.org/10.3389/fspas.2022.106947065

    Article  Google Scholar 

  • Troshichev OA, Andrezen VG (1985) The relationship between interplanetary quantities and magnetic activity in the southern polar cap. Planet Space Sci 33:415

    Article  Google Scholar 

  • Troshichev O, Janzhura A (2009) Relationship between the PC and AL indices during repetitive bay-like magnetic disturbances in the auroral zone. J Atmos Sol Terr Phys 71:1340–1352

    Article  Google Scholar 

  • Troshichev O, Janzhura A (2012a) Physical implications of discrepancy between summer and winter PC indices observed in the course of magnetospheric substorms. Adv Space Res 50:77–84. https://doi.org/10.1016/j.asr.2012.03.017

    Article  Google Scholar 

  • Troshichev O, Janzhura A (2012b) Space weather monitoring by ground-based means: PC index. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16803-1

    Book  Google Scholar 

  • Troshichev OA, Lukianova R (2002) Relation of the PC index to the solar wind parameters and substorm activity in time of magnetic storm. J Atmos Sol Terr Phys 64:585

    Article  Google Scholar 

  • Troshichev OA, Sormakov DA (2018) PC index as a proxy of the solar wind energy that entered into the magnetosphere: (3) development of magnetic storms. J Atmos Sol Terr Phys 180:60–77. https://doi.org/10.1016/j.jastp.2017.10.012

    Article  Google Scholar 

  • Troshichev OA, Sormakov DA (2019) PC index as a proxy of the solar wind energy that entered into the magnetosphere: (5) verification of the solar wind parameters presented at OMNI website. J Atmos Sol Terr Phys 196:105147. https://doi.org/10.1016/j.jastp.2019.105147

    Article  Google Scholar 

  • Troshichev OA, Kuznetsov BM, Pudovkin MI (1974) The current systems of the magnetic substorm growth and explosive phases. Planet Space Sci 22:1403–1412

    Article  Google Scholar 

  • Troshichev OA, Dmitrieva NP, Kuznetsov BM (1979a) Polar cap magnetic activity as a signature of substorm development. Planet Space Sci 27:217

    Article  Google Scholar 

  • Troshichev OA, Gizler VA, Ivanova IA, Merkurieva AY (1979b) Role of field-aligned currents in generation of high latitude magnetic disturbances. Planet Space Sci 27:1451–1459

    Article  Google Scholar 

  • Troshichev OA, Andrezen VG, Vennerstrøm S, Friis-Christensen E (1988) Magnetic activity in the polar cap—a new index. Planet Space Sci 36:1095

    Article  Google Scholar 

  • Troshichev O, Janzhura A, Stauning P (2006) Unified PCN and PCS indices: method of calculation, physical sense and dependence on the IMF azimuthal and northward components. J Geophys Res 111:A05208. https://doi.org/10.1029/2005JA011402

    Article  Google Scholar 

  • Troshichev O, Sormakov D, Janzhura A (2011a) Relation of PC index to the geomagnetic storm Dst variation. J Atmos Sol Terr Phys 73:611–622. https://doi.org/10.1016/j.jastp.2010.12.015

    Article  Google Scholar 

  • Troshichev OA, Stauning P, Liou K, Reeves G (2011b) Saw-tooth substorms: inconsistency of repetitive bay-like magnetic disturbances with behavior of aurora. Adv Space Res 47:702

    Article  Google Scholar 

  • Troshichev OA, Podorozhkina NA, Janzhura AS (2011c) Relationship between PC index and magnetospheric substorms observed under conditions of northward IMF. J Atmos Sol Terr Phys 73:2373–2378. https://doi.org/10.1016/j.jastp.2011.08.003

    Article  Google Scholar 

  • Troshichev O, Sormakov D, Janzhura A (2012) Sawtooth substorms generated under conditions of the steadily high solar wind energy input into the magnetosphere: relationship between PC, AL and ASYM indices. Adv Space Res 49:872–882. https://doi.org/10.1016/j.asr.2011.12.011

    Article  Google Scholar 

  • Troshichev OA, Podorozhkina NA, Sormakov DA, Janzhura AS (2014) PC index as a proxy of the solar wind energy that entered into the magnetosphere: (1) development of magnetic substorms. J Geophys Res Space Phys. https://doi.org/10.1002/2014JA019940

    Article  Google Scholar 

  • Troshichev O, Sormakov D, Behlke R (2018) Relationship between PC index and magnetospheric field-aligned currents measured by Swarm satellites. J Atmos Sol Terr Phys 168:37–47. https://doi.org/10.1016/j.jastp.2017.12.020

    Article  Google Scholar 

  • Troshichev OA, Dolgacheva SA, Stepanov NA, Sormakov DA (2021) The PC index variations during 23/24 solar cycles: relation to solar wind parameters and magnetospheric disturbances. J Geophys Res Space Phys. https://doi.org/10.1029/2020JA028491

    Article  Google Scholar 

  • Troshichev OA, Dolgacheva SA, Sormakov DA (2022) Invariability of relationships between the solar wind electric field EKL and the magnetic activity indices PC, AL and Dst. J Atmos Sol Terr Phys 235:105894. https://doi.org/10.1016/j.jastp.2022.105894

    Article  Google Scholar 

  • Vanjan LL, Osipova IL (1975) Electric conductivity of polar ionosphere. Geomagn Aeron 15:847

    Google Scholar 

  • Vassiliadis D, Angelopoulos V, Baker DN, Klimas AJ (1996) The relation between the northern polar cap and auroral electrojet geomagnetic indices in the wintertime. Geophys Res Lett 23:2781

    Article  Google Scholar 

  • Vennerstrom S, Friis-Christensen E, Troshichev OA, Andrezen VG (1991) Comparison between the polar cap index PC and the auroral electrojet indices AE, AL and AU. J Geophys Res 96:101

    Article  Google Scholar 

  • Vickrey JF, Vondrak RR, Matthews SJ (1981) The diurnal and latitudinal variation of auroral zone ionospheric conductivity. J Geophys Res 86:65–75

    Article  Google Scholar 

  • Wallis DD, Budzinski EE (1981) Empirical models of height integrated conductivities. J Geophys Res 86:125

    Article  Google Scholar 

  • Zmuda AJ, Armstrong JC (1974) The diurnal flow pattern of field-aligned currents. J Geophys Res 79:4611–4519

    Article  Google Scholar 

Download references

Acknowledgements

The definitive PCN and PCS indices are presented at websites (http://pcindex.org) and (http://isgi.unistra.fr) The solar wind and IMF data were obtained from the GSFC/SPDYNF OMNI/Web interface at (http://omniweb.gsfc.nasa.gov) The AE and Dst indices were provided by WDC-C2 Kyoto (http://wdc.kugi.kyoto-u.ac.jp/wdc/cresample.html). The Solar UV Irradiance data are presented on site (https://lasp.colorado.edu/lisird/data/lasp_gsfc_composite_ssi/). Information on ICME and SIR(CIR)-driven magnetic storms was taken from Catalogue of ICMEs (I. Richardson and H. Cane, 2015) and List of Stream Interaction Regions Observed by STEREO A/B (L. Jian, 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Troshichev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troshichev, O.A. PC Index as a Ground-Based Indicator of the Solar Wind Energy Incoming into the Magnetosphere: (2) Relation of PC Index to Magnetic Disturbances. Surv Geophys 45, 55–82 (2024). https://doi.org/10.1007/s10712-023-09799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-023-09799-4

Keywords

Navigation