当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ fabrication of 2D Bi/Bi2O2CO3 nanosheets anchored on Bi substrate for highly-efficient photoelectrocatalytic CO2 reduction to formate
Applied Surface Science ( IF 6.7 ) Pub Date : 2024-05-06 , DOI: 10.1016/j.apsusc.2024.160216
Xin Guo , Xiaokun Wang , Xiushuai Guan , Jiuyang Li , Changming Zhang , Yadong Bai , Xiaochao Zhang

Utilizing photoelectrocatalysis for the CO conversion into value-added chemicals presents a promising approach for alleviating energy-environmental crisis, but the current catalysts encounter the limitations of electron transfer efficiency, activity and stability. Herein, we in situ construct Bi/BiOCO composite film with nanosheets anchored on Bi substrate to optimize reaction kinetics, and effectively enhance the separation and transport efficiencies of photogenerated carriers. Our findings reveal that the formate Faraday efficiency of 92.68 % at −0.95 V ( RHE) for photoelectrocatalytic CO reduction over Bi/BiOCO film is much higher obviously than 84 % of electrocatalytic CO reduction reaches, and there is no significant decrease within 10 h of activity test. Besides, the highest applied bias photon-to-current efficiency and cathode energy efficiency can achieve 1.19 % and 61 %, respectively, indicating the superior energy utilization of the catalyst. Finally, a reasonable electron transfer mechanism for the enhanced photoelectrocatalytic CO reduction over Bi/BiOCO film is proposed and clarified based on the spectral characterizations and density functional theory calculations. This work should provide a novel perspective for the design and research of Bi-based photocathodes.

中文翻译:


原位制造锚定在 Bi 基底上的 2D Bi/Bi2O2CO3 纳米片,用于高效光电催化 CO2 还原生成甲酸盐



利用光电催化将二氧化碳转化为增值化学品是缓解能源环境危机的一种有前景的方法,但目前的催化剂在电子转移效率、活性和稳定性方面存在局限性。在此,我们原位构建了Bi/BiOCO复合薄膜,将纳米片锚定在Bi基底上,以优化反应动力学,并有效提高光生载流子的分离和传输效率。我们的研究结果表明,Bi/BiOCO 薄膜光电催化 CO 还原在 -0.95 V (RHE) 下的甲酸盐法拉第效率为 92.68%,明显高于电催化 CO 还原的 84%,并且在 10 小时内没有显着下降。活动测试。此外,最高的施加偏压光子电流效率和阴极能量效率分别达到1.19%和61%,表明催化剂具有优异的能量利用率。最后,基于光谱表征和密度泛函理论计算,提出并阐明了 Bi/BiOCO 薄膜上增强光电催化 CO 还原的合理电子转移机制。这项工作应该为铋基光电阴极的设计和研究提供新的视角。
更新日期:2024-05-06
down
wechat
bug