当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High heat transfer plant-inspired neural network structure controlled by variable magnetic field
Applied Physics Letters ( IF 4 ) Pub Date : 2024-05-15 , DOI: 10.1063/5.0205596
Dachao Li 1, 2 , Taisen Shi 1 , Jianhua Li 1 , Chunling Li 1 , Zhifeng Shi 1 , Tongkai Gu 2, 3
Affiliation  

Efficient heat dissipation and thermal protection present urgent challenges in high-power integrated circuits (ICs). Although applying a coating of highly thermally conductive materials on the surface of ICs is anticipated to mitigate heat concentration issues, ensuring thermal protection for adjacent devices continues to pose a challenge. Inspired by the microstructure of unidirectional nutrient transport in plant roots, this study utilizes magnetic liquid metal droplets to develop a high thermal conductivity network capable of adaptively manipulating the heat transfer path. This approach aims to tackle the challenges of heat concentration, disordered thermal dissipation, and thermal protection for high-power ICs, thereby enhancing thermal management efficiency. By controlling the distribution of the magnetic field, this study orchestrates the structure of the thermal conduction network to ensure rapid and orderly heat dissipation of ICs while simultaneously validating the network's thermal protection performance. The temperature in the IC thermal concentration zone reaches thermal equilibrium at 399.1 K when the ambient temperature is at 295 K. As the ambient temperature rises to 333 K, the temperature in the IC heat concentration zone stabilizes at approximately 400 K. Simultaneously, the temperature at a specific point in the thermal path of the network registers at 341 K, with the temperatures of the devices flanking this point at 314 K. The magnetron thermal conduction network, inspired by the root structure of bionic plants, not only boosts the thermal management efficiency of ICs but also shows promising application prospects in aerospace, electronics, and other related industries.

中文翻译:


可变磁场控制的高传热植物神经网络结构



高效散热和热保护对高功率集成电路(IC)提出了紧迫的挑战。尽管在 IC 表面涂覆高导热材料涂层有望缓解热量集中问题,但确保相邻设备的热保护仍然是一个挑战。受植物根部单向养分传输微观结构的启发,本研究利用磁性液态金属液滴开发出能够自适应操纵传热路径的高导热网络。该方法旨在解决大功率IC的热量集中、散热无序和热保护的挑战,从而提高热管理效率。本研究通过控制磁场的分布,协调热传导网络的结构,以确保IC快速有序的散热,同时验证网络的热防护性能。当环境温度为 295 K 时,IC 热集中区的温度在 399.1 K 处达到热平衡。当环境温度升至 333 K 时,IC 热集中区的温度稳定在 400 K 左右。网络热路径中的特定点温度为 341 K,该点两侧的器件温度为 314 K。受仿生植物根部结构启发的磁控管热传导网络不仅增强了热管理不仅提高了IC的效率,而且在航空航天、电子和其他相关行业也显示出广阔的应用前景。
更新日期:2024-05-15
down
wechat
bug