当前位置: X-MOL 学术Sep. Purif. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of plasmonic Z-scheme PGDY@MIL(Fe/Cu) photocatalyst via pore-confined growth of nano-elliptical graphdiyne for efficient photo-Fenton degradation of dinotefuran
Separation and Purification Technology ( IF 8.6 ) Pub Date : 2024-05-10 , DOI: 10.1016/j.seppur.2024.127915
Quanru Man , Fuwei Sun , Zhengsheng Zhang , Yaseen Muhammad , Yucheng Wang , Yintong Lin , Liqin Zhou , Zhenxia Zhao , Zhongxing Zhao

Constructing abundant interfaces in composite catalysts to promote their synergistic effects is the key, though a tough challenge for enhancing photo-Fenton catalysts performance. Herein, a pore-confinement strategy is proposed to construct plasmonic Z-scheme PGDY@MIL(Fe/Cu) for ultra-fast removal dinotefuran. Graphdiyne was grown on Cu sites of MIL(Fe/Cu) and formed nano-elliptical graphdiyne (PGDY) nanosheets within the confinement of pores, while the C-Cu interfacial channels were constructed to promote electron transfer in the catalytic process. Upon illumination, PGDY strongly coupled with the incident light and localized surface plasmon resonance (LSPR) could be excited, thus enhancing light absorption efficiency of PGDY@MIL(Fe/Cu) at 375–600 nm and inducing numerous hot electrons. These unique properties accelerated separation efficiency of PGDY@MIL(Fe/Cu) for photogenerated carriers, which boosted the generation rate of active radicals and Fe/Fe and Cu/Cu cycling rates during photo-Fenton catalysis. Finally, PGDY@MIL(Fe/Cu) exhibited excellent catalytic degradation kinetics (99.1 % within 40 min), mineralization efficiency (98 % within 2 h), and catalytic cycling stability for dinotefuran (DNT) compared to the reported advanced catalyst.

中文翻译:

通过纳米椭圆石墨二炔的孔限生长构建等离子体Z型PGDY@MIL(Fe/Cu)光催化剂,用于高效光芬顿降解呋虫胺

在复合催化剂中构建丰富的界面以促进其协同效应是关键,尽管这对于提高光芬顿催化剂的性能是一个艰巨的挑战。在此,提出了一种孔限制策略来构建等离子体 Z 方案 PGDY@MIL(Fe/Cu),用于超快速去除呋虫胺。石墨炔在 MIL(Fe/Cu) 的 Cu 位点上生长,并在孔的限制内形成纳米椭圆石墨炔 (PGDY) 纳米片,同时构建 C-Cu 界面通道以促进催化过程中的电子转移。在光照下,PGDY与入射光强烈耦合,局域表面等离子体共振(LSPR)可以被激发,从而提高PGDY@MIL(Fe/Cu)在375-600 nm处的光吸收效率并诱导大量热电子。这些独特的性能提高了 PGDY@MIL(Fe/Cu) 对光生载流子的分离效率,从而提高了光芬顿催化过程中活性自由基的产生速率以及 Fe/Fe 和 Cu/Cu 的循环速率。最后,与报道的先进催化剂相比,PGDY@MIL(Fe/Cu) 表现出优异的催化降解动力学(40 分钟内 99.1%)、矿化效率(2 小时内 98%)和呋虫胺 (DNT) 催化循环稳定性。
更新日期:2024-05-10
down
wechat
bug