当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ternary Mg alloy-based artificial interphase enables high-performance rechargeable magnesium batteries
Energy Storage Materials ( IF 20.4 ) Pub Date : 2024-05-11 , DOI: 10.1016/j.ensm.2024.103460
Xiao Chai , Huanhuan Xie , Ting-Ting Zhang , Yan Xin , Fang Zhang , Bijiao He , Haokai Xie , Le Yu , Huajun Tian

Rechargeable magnesium batteries (RMBs) provide potential advantages over lithium-ion batteries in terms of high volumetric capacity, natural abundance, and high safety. However, the rational design of high-performance magnesium-based metal anodes compatible with conventional electrolytes is a big challenge for the viability of RMBs. In this work, an in-situ formed ternary alloy-based artificial interphase layer on Mg foil as an anode was successfully prepared through a facile and universal electrodeposition strategy. The Mg-Sn-Bi@Mg anode provides high charge transfer dynamics for Mg deposition and constructs a reduced energy barrier for Mg ions desolvation. Thanks to the unique Mg deposition behaviors, the Mg-Sn-Bi@Mg alloy anode demonstrates a low overpotential of 39.4 mV and a long cycle life of >2000 h. The transfer kinetics for RMBs can be largely improved due to the unique alloying reactions. Density functional theory (DFT) calculations demonstrate that the designed ternary alloy-based artificial interphase layer enables faster Mg ion migration than the bare Mg electrode. Full cells with MoS cathode also show ultra-stable cycling performance over 2400 cycles at 1C in a conventional all-phenyl complex (APC) electrolyte. This facile interface modification strategy sheds light on the development of advanced RMBs and also provides a promising direction for the design of high-performance Mg-based alloy anodes for high-performance RMBs and beyond.

中文翻译:


三元镁合金基人工界面相可实现高性能可充电镁电池



可充电镁电池(RMB)在高容量、自然丰富性和高安全性方面比锂离子电池具有潜在优势。然而,与传统电解质兼容的高性能镁基金属阳极的合理设计对人民币的生存能力是一个巨大的挑战。在这项工作中,通过简便且通用的电沉积策略成功地在镁箔上制备了原位形成的三元合金基人工中间相层作为阳极。 Mg-Sn-Bi@Mg 阳极为 Mg 沉积提供高电荷转移动力学,并为 Mg 离子去溶剂化构建降低的能垒。由于独特的镁沉积行为,Mg-Sn-Bi@Mg合金阳极表现出39.4 mV的低过电势和>2000小时的长循环寿命。由于独特的合金化反应,人民币的转移动力学可以大大改善。密度泛函理论 (DFT) 计算表明,设计的三元合金基人工中间相层能够比裸镁电极实现更快的镁离子迁移。采用 MoS2 阴极的全电池在传统的全苯基络合物 (APC) 电解质中在 1C 下也表现出超稳定的循环性能,循环次数超过 2400 次。这种简便的界面改性策略为先进人民币的发展提供了线索,也为高性能人民币及其他高性能镁基合金阳极的设计提供了有前途的方向。
更新日期:2024-05-11
down
wechat
bug