当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accumulation of Long-Lived Photogenerated Holes at Indium Single-Atom Catalysts via Two Coordinate Nitrogen Vacancy Defect Engineering for Enhanced Photocatalytic Oxidation
Advanced Materials ( IF 29.4 ) Pub Date : 2024-05-11 , DOI: 10.1002/adma.202309205
Jingjing Zhang 1 , Xuan Yang 1 , Guofang Xu 1 , Biswal Basanta Kumar 1 , Rajasekhar Balasubramanian 1
Affiliation  

Visible-light-driven photocatalytic oxidation by photogenerated holes has immense potential for environmental remediation applications. While the electron-mediated photoreduction reactions are often at the spotlight, active holes possess a remarkable oxidation capacity that can degrade recalcitrant organic pollutants, resulting in nontoxic byproducts. However, the random charge transfer and rapid recombination of electron–hole pairs hinder the accumulation of long-lived holes at the reaction center. Herein, a novel method employing defect-engineered indium (In) single-atom photocatalysts with nitrogen vacancy (Nv) defects, dispersed in carbon nitride foam (In-Nv-CNF), is reported to overcome these challenges and make further advances in photocatalysis. This Nv defect-engineered strategy produces a remarkable extension in the lifetime and an increase in the concentration of photogenerated holes in In-Nv-CNF. Consequently, the optimized In-Nv-CNF demonstrates a remarkable 50-fold increase in photo-oxidative degradation rate compared to pristine CN, effectively breaking down two widely used antibiotics (tetracycline and ciprofloxacin) under visible light. The contaminated water treated by In-Nv-CNF is completely nontoxic based on the growth of Escherichia coli. Structural–performance correlations between defect engineering and long-lived hole accumulation in In-Nv-CNF are established and validated through experimental and theoretical agreement. This work has the potential to elevate the efficiency of overall photocatalytic reactions from a hole-centric standpoint.

中文翻译:


通过二配位氮空位缺陷工程在铟单原子催化剂上积累长寿命光生空穴以增强光催化氧化



可见光驱动的光生空穴光催化氧化在环境修复应用中具有巨大的潜力。虽然电子介导的光还原反应经常受到关注,但活性空穴具有显着的氧化能力,可以降解顽固的有机污染物,产生无毒的副产物。然而,随机电荷转移和电子空穴对的快速复合阻碍了反应中心长寿命空穴的积累。据报道,一种采用缺陷工程设计的具有氮空位(Nv)缺陷的铟(In)单原子光催化剂分散在氮化碳泡沫(In-Nv-CNF)中的新方法可以克服这些挑战,并在光催化方面取得进一步进展。这种 Nv 缺陷工程策略显着延长了 In-Nv-CNF 的寿命,并增加了光生空穴的浓度。因此,与原始 CN 相比,优化的 In-Nv-CNF 的光氧化降解率显着提高了 50 倍,在可见光下有效分解了两种广泛使用的抗生素(四环素和环丙沙星)。由于大肠杆菌的生长,经In-Nv-CNF处理的污染水是完全无毒的。 In-Nv-CNF 中的缺陷工程和长寿命空穴积累之间的结构-性能相关性通过实验和理论一致性得到建立和验证。从以空穴为中心的角度来看,这项工作有可能提高整个光催化反应的效率。
更新日期:2024-05-11
down
wechat
bug