当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Creating Atomically Iridium-Doped PdOx Nanoparticles for Efficient and Durable Methane Abatement
Environmental Science & Technology ( IF 11.4 ) Pub Date : 2024-05-10 , DOI: 10.1021/acs.est.4c00868
Yingjie Wang 1, 2 , Guangyan Xu 1, 3 , Yanwei Sun 1, 3 , Wei Shi 1, 3 , Xiaoyan Shi 1, 3 , Yunbo Yu 1, 2, 3 , Hong He 1, 2, 3
Affiliation  

The urgent environmental concern of methane abatement, attributed to its high global warming potential, necessitates the development of methane oxidation catalysts (MOC) with enhanced low-temperature activity and durability. Herein, an iridium-doped PdOx nanoparticle supported on silicalite-1 zeolite (PdIr/S-1) catalyst was synthesized and applied for methane catalytic combustion. Comprehensive characterizations confirmed the atomically dispersed nature of iridium on the surface of PdOx nanoparticles, creating an Ir4f–O–Pdcus microstructure. The atomically doped Ir transferred more electrons to adjacent oxygen atoms, modifying the electronic structure of PdOx and thus enhancing the redox ability of the PdIr/S-1 catalysts. This electronic modulation facilitated methane adsorption on the Pd site of Ir4f–O–Pdcus, reducing the energy barrier for C–H bond cleavage and thereby increasing the reaction rate for methane oxidation. Consequently, the optimized PdIr0.1/S-1 showed outstanding low-temperature activity for methane combustion (T50 = 276 °C) after aging and maintained long-term stability over 100 h under simulated exhaust conditions. Remarkably, the novel PdIr0.1/S-1 catalyst demonstrated significantly enhanced activity even after undergoing harsh hydrothermal aging at 750 °C for 16 h, significantly outperforming the conventional Pd/Al2O3 catalyst. This work provides valuable insights for designing efficient and durable MOC catalysts, addressing the critical issue of methane abatement.

中文翻译:

制造原子铱掺杂 PdOx 纳米颗粒以实现高效、持久的甲烷减排

由于甲烷减排具有较高的全球变暖潜力,因此迫切需要开发具有增强低温活性和耐用性的甲烷氧化催化剂(MOC)。在此,合成了一种负载于silicalite-1沸石(PdIr/S-1)催化剂上的铱掺杂PdO x纳米颗粒,并将其应用于甲烷催化燃烧。综合表征证实了铱在 PdO x纳米颗粒表面的原子分散性质,形成了 Ir 4f –O-Pd cus微观结构。原子掺杂的Ir将更多的电子转移到相邻的氧原子,改变了PdO x的电子结构,从而增强了PdIr/S-1催化剂的氧化还原能力。这种电子调节促进了甲烷在 Ir 4f –O–Pd cus的 Pd 位点上的吸附,降低了 C–H 键断裂的能垒,从而提高了甲烷氧化的反应速率。因此,优化后的PdIr 0.1 /S-1在老化后表现出出色的甲烷燃烧低温活性(T 50 = 276 °C),并在模拟排气条件下保持100小时以上的长期稳定性。值得注意的是,即使在750℃下经历16小时的严酷水热老化后,新型PdIr 0.1 /S-1催化剂仍表现出显着增强的活性,显着优于传统的Pd/Al 2 O 3催化剂。这项工作为设计高效耐用的 MOC 催化剂、解决甲烷减排的关键问题提供了宝贵的见解。
更新日期:2024-05-10
down
wechat
bug