当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational studies on hyper velocity impact of spherical projectiles on whipple shield with hybrid Newtonian fluid-filled core
Acta Astronautica ( IF 3.5 ) Pub Date : 2024-04-24 , DOI: 10.1016/j.actaastro.2024.04.033
Anand Pai , Nishant Mujumdar , Aditya Piccholiya , Marcos Rodriguez-Millan , Masahiro Nishida , Satish Shenoy B.

Satellites orbiting in low Earth orbits face potential threats from space debris. To mitigate this risk, a Whipple shield is employed to shield satellites from potential hyper-velocity impacts caused by debris of varying sizes and speeds. Typically, these protective systems use spaced aluminum plates affixed to the satellite’s exterior. Ongoing advancements in this field include exploring alternative materials such as foam, cellular cores, and ceramics to replace aluminum in plate construction. This study introduces a hybrid configuration featuring a Newtonian fluid-filled, high-performance fiber-reinforced polymer core positioned between the aluminum alloy plates, aiming to enhance the Whipple shield’s overall shielding effectiveness. The analysis of hyper-velocity impacts was performed numerically using ANSYS Autodyn® computational software. Spherical projectiles made of stainless steel, ranging in diameter from 2 mm to 4 mm, were selected for direct collision simulations with the Whipple shield at velocities of 5 km/s, 7 km/s, and 9 km/s. The front and rear plates, each 1 mm thick, were constructed using AA6061-T6. The core, measuring 10 mm in thickness, incorporated multiple plies of Kevlar fiber-reinforced polymer (KFRP), with interplay spacing between successive KFRP plies filled with a Newtonian fluid (water). It was observed that spherical projectiles made of stainless steel with diameter 3 mm penetrated the rear plate of the whipple shield at the lower velocity of 5 km/s, with enhanced damage as the initial velocity of the projectile was increased from 5 km/s to 9 km/s. The debris cloud was found to scatter the fluid droplets, rupture the successive KFRP layers, with the initial kinetic energy playing a significant role in the severity of the damage.

中文翻译:

球形弹丸对混合牛顿充液芯鞭打护盾的超高速冲击计算研究

在近地轨道运行的卫星面临着空间碎片的潜在威胁。为了减轻这种风险,采用惠普尔防护罩来保护卫星免受不同尺寸和速度的碎片造成的潜在超高速撞击。通常,这些保护系统使用固定在卫星外部的间隔铝板。该领域不断取得的进展包括探索泡沫、蜂窝芯材和陶瓷等替代材料,以取代板材结构中的铝。这项研究引入了一种混合配置,其特点是在铝合金板之间放置了牛顿流体填充的高性能纤维增强聚合物芯,旨在提高惠普尔屏蔽的整体屏蔽效能。使用 ANSYS Autodyn® 计算软件对超高速冲击进行数值分析。选择直径为 2 mm 至 4 mm 的不锈钢球形弹丸,以 5 km/s、7 km/s 和 9 km/s 的速度与 Whipple 防护罩进行直接碰撞模拟。前板和后板各 1 毫米厚,​​采用 AA6061-T6 制成。芯材厚度为 10 毫米,包含多层凯夫拉尔纤维增强聚合物 (KFRP),连续的 KFRP 层之间具有相互作用间距,填充有牛顿流体(水)。观察到,直径为 3 mm 的不锈钢球形弹丸以 5 km/s 的较低速度穿透了鞭打防护罩的后板,随着弹丸初速从 5 km/s 增加到9 公里/秒。研究发现,碎片云会分散液滴,使连续的 KFRP 层破裂,初始动能对损坏的严重程度起着重要作用。
更新日期:2024-04-24
down
wechat
bug