当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Data-Driven Compression of Electron-Phonon Interactions
Physical Review X ( IF 12.5 ) Pub Date : 2024-05-01 , DOI: 10.1103/physrevx.14.021023
Yao Luo , Dhruv Desai , Benjamin K. Chang , Jinsoo Park , Marco Bernardi

First-principles calculations of electron interactions in materials have seen rapid progress in recent years, with electron-phonon (eph) interactions being a prime example. However, these techniques use large matrices encoding the interactions on dense momentum grids, which reduces computational efficiency and obscures interpretability. For eph interactions, existing interpolation techniques leverage locality in real space, but the high dimensionality of the data remains a bottleneck to balance cost and accuracy. Here we show an efficient way to compress eph interactions based on singular value decomposition (SVD), a widely used matrix and image compression technique. Leveraging (un)constrained SVD methods, we accurately predict material properties related to eph interactions—including charge mobility, spin relaxation times, band renormalization, and superconducting critical temperature—while using only a small fraction (1%–2%) of the interaction data. These findings unveil the hidden low-dimensional nature of eph interactions. Furthermore, they accelerate state-of-the-art first-principles eph calculations by about 2 orders of magnitude without sacrificing accuracy. Our Pareto-optimal parametrization of eph interactions can be readily generalized to electron-electron and electron-defect interactions, as well as to other couplings, advancing quantitative studies of condensed matter.

中文翻译:

电子声子相互作用的数据驱动压缩

近年来,材料中电子相互作用的第一原理计算取得了快速进展,其中电子-声子(e-酸碱度)交互就是一个很好的例子。然而,这些技术使用大型矩阵来编码密集动量网格上的相互作用,这降低了计算效率并模糊了可解释性。为了e-酸碱度为了实现交互,现有的插值技术利用了真实空间中的局部性,但数据的高维性仍然是平衡成本和准确性的瓶颈。这里我们展示一种有效的压缩方法e-酸碱度基于奇异值分解(SVD)的交互,奇异值分解是一种广泛使用的矩阵和图像压缩技术。利用(无)约束 SVD 方法,我们准确预测与e-酸碱度相互作用——包括电荷迁移率、自旋弛豫时间、能带重正化和超导临界温度——同时仅使用相互作用数据的一小部分(1%–2%)。这些发现揭示了隐藏的低维性质e-酸碱度互动。此外,他们加速了最先进的第一原理e-酸碱度在不牺牲精度的情况下,计算量提高了约 2 个数量级。我们的帕累托最优参数化e-酸碱度相互作用可以很容易地推广到电子-电子和电子-缺陷相互作用,以及其他耦合,从而推进凝聚态物质的定量研究。
更新日期:2024-05-01
down
wechat
bug