当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thin-Film Composite Membrane Compaction: Exploring the Interplay among Support Compressive Modulus, Structural Characteristics, and Overall Transport Efficiency
Environmental Science & Technology ( IF 11.4 ) Pub Date : 2024-04-29 , DOI: 10.1021/acs.est.4c01639
Chunyan Xu 1, 2 , Zhongzhen Wang 3 , Yuhang Hu 3, 4 , Yongsheng Chen 2
Affiliation  

Water scarcity has driven the demand for water production from unconventional sources and the reuse of industrial wastewater. Pressure-driven membranes, notably thin-film composite (TFC) membranes, stand as energy-efficient alternatives to the water scarcity challenge and various wastewater treatments. While pressure drives solvent movement, it concurrently triggers membrane compaction and flux deterioration. This necessitates a profound comprehension of the intricate interplay among compressive modulus, structural properties, and transport efficacy amid the compaction process. In this study, we present an all-encompassing compaction model for TFC membranes, applying authentic structural and mechanical variables, achieved by coupling viscoelasticity with Monte Carlo flux calculations based on the resistance-in-series model. Through validation against experimental data for multiple commercial membranes, we evaluated the influence of diverse physical parameters. We find that support polymers with a higher compressive modulus (lower compliance), supports with higher densities of “finger-like” pores, and “sponge-like” pores with optimum void fractions will be preferred to mitigate compaction. More importantly, we uncover a trade-off correlation between steady-state permeability and the modulus for identical support polymers displaying varying porosities. This model holds the potential as a valuable guide in shaping the design and optimization for further TFC applications and extending its utility to biological scaffolds and hydrogels with thin-film coatings in tissue engineering.

中文翻译:

薄膜复合膜压实:探索支撑压缩模量、结构特性和整体传输效率之间的相互作用

水资源短缺推动了对非常规水源生产和工业废水再利用的需求。压力驱动膜,尤其是薄膜复合 (TFC) 膜,是应对水资源短缺挑战和各种废水处理的节能替代品。当压力驱动溶剂移动时,它同时引发膜压实和通量恶化。这就需要深刻理解压实过程中压缩模量、结构特性和传输效率之间复杂的相互作用。在这项研究中,我们提出了一个全面的 TFC 膜压实模型,应用真实的结构和机械变量,通过将粘弹性与基于串联电阻模型的蒙特卡罗通量计算相结合来实现。通过对多个商用膜的实验数据进行验证,我们评估了不同物理参数的影响。我们发现,具有较高压缩模量(较低柔顺性)的支撑聚合物、具有较高密度的“指状”孔和具有最佳空隙率的“海绵状”孔的支撑将是减轻压实的首选。更重要的是,我们发现了具有不同孔隙率的相同支撑聚合物的稳态渗透率和模量之间的权衡相关性。该模型有潜力为进一步 TFC 应用的设计和优化提供有价值的指导,并将其实用性扩展到组织工程中具有薄膜涂层的生物支架和水凝胶。
更新日期:2024-04-30
down
wechat
bug