当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Laser Printing of Large‐Area Conformal 3D photonic Circuits in Glass
Laser & Photonics Reviews ( IF 11.0 ) Pub Date : 2024-04-30 , DOI: 10.1002/lpor.202400060
Xuhu Han 1 , Yuying Wang 1 , Jiacheng Hu 1 , Lijing Zhong 2 , Jianrong Qiu 1
Affiliation  

Photonic integrated circuits (PICs) are iterating on electronic ones to enable higher‐speed parallel computing while meeting the growing demands for energy efficiency in big‐data processing. However, manufacturing multi‐layered and 3D PICs remains challenging based on conventional planar lithography. Here, a rapid prototyping technique is delineated to configure large‐area and 3D PIC in glass based on laser‐direct written optical waveguides by employing femtosecond cylindrically polarized vortex laser beams. The vortex laser beam is mathematically rotationally invariant and capable of conformally transforming waveguide cross‐sections at arbitrary bending angles of 0–90° and across a large depth change. Based on this approach, a one‐layer 12‐core waveguide circuit with a variable cross‐section (diameter 5–11.5 µm) while maintaining a high mode ellipticity >0.974, as well as a more complex three‐layer 36‐core connector in which the waveguide dives continuously from 50 µm to 550 µm with a small loss difference of <0.1 dB is demonstrated. This work offers a pathway for 3D imprinting of large‐area photonic circuits in glass and other transparent materials, which has potential applications in high‐efficiency photonic computing, multidimensional quantum networks, and 3D optics topology.

中文翻译:

玻璃中大面积共形 3D 光子电路的激光打印

光子集成电路(PIC)正在电子电路的基础上进行迭代,以实现更高速的并行计算,同时满足大数据处理中对能源效率日益增长的需求。然而,基于传统平面光刻制造多层和 3D PIC 仍然具有挑战性。这里,描述了一种快速原型技术,通过采用飞秒柱面偏振涡旋激光束,基于激光直写光波导在玻璃中配置大面积 3D PIC。涡旋激光束在数学上具有旋转不变性,能够以 0-90° 的任意弯曲角度和大的深度变化对波导横截面进行共形变换。基于这种方法,具有可变横截面(直径 5-11.5 µm)的单层 12 芯波导电路,同时保持高模椭圆率 >0.974,以及更复杂的三层 36 芯连接器演示了波导从 50 µm 连续潜入到 550 µm,损耗差异小至 <0.1 dB。这项工作为玻璃和其他透明材料中大面积光子电路的 3D 压印提供了一条途径,在高效光子计算、多维量子网络和 3D 光学拓扑中具有潜在的应用。
更新日期:2024-04-30
down
wechat
bug