当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A hydrogel-based moist-electric generator with superior energy output and environmental adaptability
Nano Energy ( IF 17.6 ) Pub Date : 2024-04-24 , DOI: 10.1016/j.nanoen.2024.109673
Zhoujun Huang , Chunfeng Li , Wenjun Ying , Nanzhe Pan , Xiaoping Lei , Jie Zhang , Ruzhu Wang , Jiayun Wang

Harvesting energy from ubiquitous moisture has emerged as a promising way to collect energy irrespective of location and time. However, the electrical output of moist-electric generators (MEGs) is currently insufficient for practical applications. In this study, a highly efficient electricity-generating film was constructed by combining silicon dioxide (SiO2) nanofibers, sodium alginate (SA) and reduced graphene oxide (rGO) matrix impregnated with calcium chloride. The resulting SA–SiO2–rGO (SSG) film demonstrates a strong moisture-adsorption ability of 1.6 g/g at 80 % RH and 30 °C, and a relatively high ionic conductivity of 1.46 S m. The SSG film's strong moisture-adsorption capacity allows rapid ion dissociation, and its excellent electrical conductivity enhances ion migration. Thus, a single centimeter-sized device generates an open-circuit voltage () of up to ∼0.6 V and a short-circuit current () of ∼2.24 mA (0.14 mA cm). This short-circuit current is more than 10 times those of most reported MEGs. Moreover, an SSG-film-based MEG maintains a voltage output of ∼0.6 V over rather wide ranges of temperature (0–40 °C) and relative humidity (20 %–80 %), demonstrating superior environmental adaptability. In summary, this study provides fresh insights into the design of high-performance composite materials for efficient moist-electric energy conversion.

中文翻译:

具有优异能量输出和环境适应性的水凝胶湿发电机

从无处不在的水分中收集能量已成为一种有前景的收集能量的方法,无论地点和时间如何。然而,湿发电机(MEG)的电力输出目前不足以满足实际应用。在这项研究中,通过将二氧化硅(SiO2)纳米纤维、海藻酸钠(SA)和浸渍氯化钙的还原氧化石墨烯(rGO)基质相结合,构建了一种高效发电薄膜。所得 SA-SiO2-rGO (SSG) 薄膜在 80% RH 和 30 °C 下表现出 1.6 g/g 的强吸湿能力,以及 1.46 S m 的相对较高的离子电导率。 SSG薄膜强大的吸湿能力允许离子快速解离,其优异的导电性增强了离子迁移。因此,单厘米大小的器件可产生高达~0.6 V 的开路电压 () 和~2.24 mA (0.14 mA cm) 的短路电流 ()。该短路电流是大多数报道的 MEG 的 10 倍以上。此外,基于SSG薄膜的MEG在相当宽的温度(0-40°C)和相对湿度(20%-80%)范围内保持~0.6V的电压输出,表现出优异的环境适应性。总之,这项研究为高效湿电能转换的高性能复合材料的设计提供了新的见解。
更新日期:2024-04-24
down
wechat
bug