当前位置: X-MOL 学术CCS Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailored Interphases Construction for Enhanced Si Anode and Ni-Rich Cathode Performance in Lithium-Ion Batteries
CCS Chemistry ( IF 11.2 ) Pub Date : 2024-04-30 , DOI: 10.31635/ccschem.024.202404120
Yuxiang Huang 1 , Yuchen Ji 1 , Guorui Zheng 2 , Hongbin Cao 1 , Haoyu Xue 1 , Xiangming Yao 1 , Lu Wang 1 , Shiming Chen 1 , Zuwei Yin 3 , Feng Pan 1 , Luyi Yang 1
Affiliation  

As promising candidates for high-energy-density lithium-ion batteries, both silicon (Si) anodes and nickel-rich cathodes face significant challenges due to structural instability arising from interphases. In this study, we introduced tetravinylsilane (TVSi) as a multifunctional electrolyte additive to engineer tailored interphases simultaneously on Si anode and LiNi0.92Mn0.05Co0.03O2 cathode, thereby enhancing their electrochemical performance. On one front, TVSi underwent polymerization, leading to the formation of a composite solid electrolyte interphase (SEI) with an interpenetrating network structure on the Si surface. This SEI effectively accommodated volume changes during cycling, which inhibited SEI growth, hence, preserving the battery capacity. On the other hand, the TVSi-induced cathode electrolyte interphase (CEI) exhibited a dense structure comprising a chemically bonded silicate-silane polymer. This CEI effectively mitigated transition metal dissolution by scavenging hydrofluoric acid (HF) and reduced irreversible phase transitions by minimizing side reactions. As a result of the enhanced interfacial stability achieved on both electrodes, TVSi enabled improved performance in full cells fabricated with a LiNi0.92Mn0.05Co0.03O2 cathode paired with a Si anode. This multifunctional additive strategy offers a novel perspective on additive design for high-energy-density lithium-ion batteries, showcasing its potential for advancing battery technology.



中文翻译:

定制界面结构以增强锂离子电池中的硅阳极和富镍阴极性能

作为高能量密度锂离子电池的有希望的候选者,硅(Si)阳极和富镍阴极都面临着由于界面引起的结构不稳定而面临的重大挑战。在这项研究中,我们引入四乙烯基硅烷(TVSi)作为多功能电解质添加剂,在Si阳极和LiNi 0.92 Mn 0.05 Co 0.03 O 2阴极上同时设计定制的界面,从而提高它们的电化学性能。一方面,TVSi 发生聚合,导致在 Si 表面形成具有互穿网络结构的复合固体电解质界面(SEI)。这种 SEI 有效地适应了循环过程中的体积变化,从而抑制了 SEI 的增长,从而保留了电池容量。另一方面,TVSi诱导的阴极电解质界面(CEI)表现出包含化学键合的硅酸盐-硅烷聚合物的致密结构。该 CEI 通过清除氢氟酸 (HF) 有效减轻过渡金属溶解,并通过最大限度地减少副反应减少不可逆相变。由于在两个电极上实现了增强的界面稳定性,TVSi 提高了由 LiNi 0.92 Mn 0.05 Co 0.03 O 2阴极与 Si 阳极配对制造的全电池的性能。这种多功能添加剂策略为高能量密度锂离子电池的添加剂设计提供了新颖的视角,展示了其推进电池技术的潜力。

更新日期:2024-05-01
down
wechat
bug