当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluorite-structured antiferroelectric hafnium-zirconium oxide for emerging nonvolatile memory and neuromorphic-computing applications
Applied Physics Reviews ( IF 15.0 ) Pub Date : 2024-04-08 , DOI: 10.1063/5.0175439
Kangli Xu 1 , Tianyu Wang 2 , Jiajie Yu 1 , Yongkai Liu 1 , Zhenhai Li 1 , Chen Lu 1 , Jieru Song 1 , Jialin Meng 1 , Hao Zhu 1 , Qingqing Sun 1 , David Wei Zhang 1 , Lin Chen 1
Affiliation  

The rapid progress of the internet of things, cloud computing, and artificial intelligence has increased demand for high-performance computing. This demand has led to a focused exploration of novel nonvolatile memory (NVM) and brain-inspired neuromorphic-computing electronics, with research efforts directed at identifying materials compatible with complementary metal-oxide-semiconductor technology. Exploring fluorite-structured hafnium-zirconium oxide (HZO) mixed oxides has revealed promising ferroelectric (FE) and memristor characteristics, suggesting potential applications in emerging technologies. However, certain intrinsic properties of HZO-based FEs, such as high coercive fields (Ec) and polarization metastability, may pose challenges for commercial viability. Recent investigations of fluorite-structured HZO-based antiferroelectrics (AFEs) have highlighted their advantages, including lower energetic barriers, higher switching speeds, and a uniform phase distribution. These inherent benefits position fluorite-structured HZO-based AFEs as potential candidates within the NVM landscape. Furthermore, the accumulated polarization and spontaneous depolarization characteristics of fluorite-structured HZO-based AFEs make them worthy of potential integration into neuromorphic-computing because they resemble certain aspects of neuron behavior. Despite these positive aspects, a more thorough exploration and consideration are needed to address existing challenges. This review aims to present fluorite-structured HZO-based AFE materials and highlight the current challenges, possible applications, and future opportunities and can act as an update for recent developments in these intriguing materials and provide guidance for future researchers in the optimization and design of HZO-based AFE materials and devices for emerging NVM and neuromorphic-computing applications.

中文翻译:

用于新兴非易失性存储器和神经形态计算应用的萤石结构反铁电铪锆氧化物

物联网、云计算、人工智能的快速发展,增加了对高性能计算的需求。这一需求引发了对新型非易失性存储器(NVM)和受大脑启发的神经形态计算电子产品的集中探索,研究工作旨在识别与互补金属氧化物半导体技术兼容的材料。对萤石结构的铪锆氧化物 (HZO) 混合氧化物的探索揭示了有前景的铁电 (FE) 和忆阻器特性,表明了在新兴技术中的潜在应用。然而,基于 HZO 的 FE 的某些固有特性,例如高矫顽力场 (Ec) 和极化亚稳态,可能会对商业可行性带来挑战。最近对萤石结构 HZO 反铁电体 (AFE) 的研究突显了它们的优势,包括较低的能量势垒、更高的开关速度和均匀的相分布。这些固有的优势使萤石结构的 HZO 基 AFE 成为 NVM 领域的潜在候选者。此外,基于萤石结构的 HZO AFE 的累积极化和自发去极化特性使它们值得集成到神经形态计算中,因为它们类似于神经元行为的某些方面。尽管有这些积极的方面,但仍需要更彻底的探索和考虑来应对现有的挑战。本综述旨在介绍萤石结构的 HZO 基 AFE 材料,并强调当前的挑战、可能的应用和未来的机遇,并可以作为这些有趣材料的最新发展的更新,并为未来研究人员的优化和设计提供指导。用于新兴 NVM 和神经形态计算应用的基于 HZO 的 AFE 材料和器件。
更新日期:2024-04-08
down
wechat
bug