当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Closed-loop electron-beam-induced spectroscopy and nanofabrication around individual quantum emitters
Nanophotonics ( IF 7.5 ) Pub Date : 2024-03-21 , DOI: 10.1515/nanoph-2023-0877
Jawaher Almutlaq 1 , Kyle P. Kelley 2 , Hyeongrak Choi 1 , Linsen Li 1 , Benjamin Lawrie 3 , Ondrej Dyck 2 , Dirk Englund 1 , Stephen Jesse 2
Affiliation  

Color centers in diamond play a central role in the development of quantum photonic technologies, and their importance is only expected to grow in the near future. For many quantum applications, high collection efficiency from individual emitters is required, but the refractive index mismatch between diamond and air limits the optimal collection efficiency with conventional diamond device geometries. While different out-coupling methods with near-unity efficiency exist, many have yet to be realized due to current limitations in nanofabrication methods, especially for mechanically hard materials like diamond. Here, we leverage electron-beam-induced etching to modify Sn-implanted diamond quantum microchiplets containing integrated waveguides with a width and thickness of 280 nm and 200 nm, respectively. This approach allows for simultaneous high-resolution imaging and modification of the host matrix with an open geometry and direct writing. When coupled with the cathodoluminescence signal generated from the electron–emitter interactions, we can monitor the enhancement of the quantum emitters in real-time with nanoscale spatial resolution. The operando cathodoluminescence measurement and fabrication around single photon emitters demonstrated here provide a new foundation for the potential control of emitter–cavity interactions in integrated quantum photonics.

中文翻译:

闭环电子束诱导光谱和单个量子发射器周围的纳米加工

钻石的色心在量子光子技术的发展中发挥着核心作用,并且其重要性预计在不久的将来只会增长。对于许多量子应用,需要单个发射器的高收集效率,但金刚石和空气之间的折射率不匹配限制了传统金刚石装置几何形状的最佳收集效率。虽然存在效率接近一致的不同输出耦合方法,但由于纳米制造方法目前的限制,特别是对于金刚石等机械硬质材料,许多方法尚未实现。在这里,我们利用电子束诱导蚀刻来修改注入锡的金刚石量子微芯片,其中包含宽度和厚度分别为 280 nm 和 200 nm 的集成波导。这种方法允许同时进行高分辨率成像并通过开放几何结构和直接写入来修改主矩阵。当与电子发射体相互作用产生的阴极发光信号相结合时,我们可以以纳米级空间分辨率实时监测量子发射体的增强。这里演示的单光子发射器周围的操作阴极发光测量和制造为集成量子光子学中发射器-腔相互作用的潜在控制提供了新的基础。
更新日期:2024-03-21
down
wechat
bug