当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metasurface with all-optical tunability for spatially-resolved and multilevel thermal radiation
Nanophotonics ( IF 7.5 ) Pub Date : 2024-03-13 , DOI: 10.1515/nanoph-2024-0005
Shuhui Jiao 1 , Kang Zhao 1 , Jianhui Jiang 1, 2 , Kailin Zhao 1, 2 , Qin Guo 1 , Jingbo Wang 1 , Yansong Zhang 1 , Gang Chen 2 , Qian Cheng 1, 2 , Pei Zuo 3 , Weina Han 1, 2
Affiliation  

Manipulating the thermal emission in the infrared (IR) range significantly impacts both fundamental scientific research and various technological applications, including IR thermal camouflage, information encryption, and radiative cooling. While prior research has put forth numerous materials and structures for these objectives, the significant challenge lies in attaining spatially resolved and dynamically multilevel control over their thermal emissions. In this study, a one-step ultrafast laser writing technique is experimentally demonstrated to achieve position-selective control over thermal emission based on the phase-change material Ge2Sb2Te5 (GST). Ultrafast laser writing technique enables direct fabrication and manipulation of laser-induced crystalline micro/nano-structures on GST films. Thermal emission can be precisely controlled by adjusting the pulse energy of the ultrafast laser, achieving a high thermal emissivity modulation precision of 0.0014. By controlling thermal emission, the ultrafast laser writing technique enables multilevel patterned processing. This provides a promising approach for multilevel IR thermal camouflage, which is demonstrated with emissivity-modulated GST emitters. Remarkably, ultrafast laser-induced crystalline micro/nano-structures display geometric grating features, resulting in a diffraction-based structural color effect. This study demonstrates the effective use of laser-printed patterns for storing information in both visible and infrared spectrum.

中文翻译:

具有全光学可调性的超表面,可实现空间分辨和多级热辐射

操纵红外 (IR) 范围内的热发射会对基础科学研究和各种技术应用产生重大影响,包括红外热伪装、信息加密和辐射冷却。虽然先前的研究已经为这些目标提出了许多材料和结构,但重大挑战在于实现对其热排放的空间解析和动态多级控制。在这项研究中,实验证明了一种单步超快激光写入技术,可实现基于相变材料Ge的热发射的位置选择性控制225(消费税)。超快激光写入技术能够在 GST 薄膜上直接制造和操纵激光诱导晶体微/纳米结构。通过调节超快激光器的脉冲能量可以精确控制热发射,实现0.0014的高热发射率调制精度。通过控制热发射,超快激光写入技术可以实现多级图案化处理。这为多级红外热伪装提供了一种有前景的方法,并通过发射率调制 GST 发射器进行了演示。值得注意的是,超快激光诱导的晶体微/纳米结构显示出几何光栅特征,从而产生基于衍射的结构色彩效果。这项研究展示了激光打印图案在可见光和红外光谱中存储信息的有效使用。
更新日期:2024-03-13
down
wechat
bug