当前位置: X-MOL 学术Bioeng. Transl. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synchronously in vivo real‐time monitoring bacterial load and temperature with evaluating immune response to decipher bacterial infection
Bioengineering & Translational Medicine ( IF 7.4 ) Pub Date : 2024-03-13 , DOI: 10.1002/btm2.10656
Huaixuan Sheng 1 , Huizhu Li 1 , Shunyao Li 1 , Chengxuan Yu 1 , Yueming Wang 2 , Haichen Hu 1 , Lu Fang 3, 4 , Fuchun Chen 4 , Yanyan Lu 5 , Xiaogang Xu 5 , Xing Yang 6 , Shiyi Chen 1 , Yuefeng Hao 6 , Yunxia Li 1 , Sijia Feng 1 , Jun Chen 1
Affiliation  

Determining the precise course of bacterial infection requires abundant in vivo real‐time data. Synchronous monitoring of the bacterial load, temperature, and immune response can satisfy the shortage of real‐time in vivo data. Here, we conducted a study in the joint‐infected mouse model to synchronously monitor the bacterial load, temperature, and immune response using the second near‐infrared (NIR‐II) fluorescence imaging, infrared thermography, and immune response analysis for 2 weeks. Staphylococcus aureus (S. aureus) was proved successfully labeled with glucose‐conjugated quantum dots in vitro and in subcutaneous‐infected model. The bacterial load indicated by NIR‐II fluorescence imaging underwent a sharp drop at 1 day postinfection. At the same time, the temperature gap detected through infrared thermography synchronously brought by infection reached lowest value. Meanwhile, the flow cytometry analysis demonstrated that immune response including macrophage, neutrophil, B lymphocyte, and T lymphocyte increased to the peak at 1 day postinfection. Moreover, both M1 macrophage and M2 macrophage in the blood have an obvious change at ~ 1 day postinfection, and the change was opposite. In summary, this study not only obtained real‐time and long‐time in vivo data on the bacterial load, temperature gap, and immune response in the mice model of S. aureus infection, but also found that 1 day postinfection was the key time point during immune response against S. aureus infection. Our study will contribute to synchronously and precisely studying the complicated complex dynamic relationship after bacterial infection at the animal level.

中文翻译:

同步体内实时监测细菌负荷和温度,并评估破译细菌感染的免疫反应

确定细菌感染的精确过程需要大量的体内实时数据。同步监测细菌负荷、温度和免疫反应,可以满足体内实时数据的不足。在这里,我们在关节感染的小鼠模型中进行了一项研究,利用第二次近红外(NIR-II)荧光成像、红外热成像和免疫反应分析同步监测细菌负荷、温度和免疫反应,持续两周。金黄色葡萄球菌金黄色葡萄球菌)在体外和皮下感染模型中被证明可以成功地用葡萄糖共轭量子点进行标记。NIR-II 荧光成像显示的细菌负荷在感染后 1 天急剧下降。与此同时,通过红外热成像同步检测到的感染带来的温度差距达到最低值。同时,流式细胞术分析表明,包括巨噬细胞、中性粒细胞、B淋巴细胞和T淋巴细胞在内的免疫反应在感染后1天增加至峰值。而且,血液中的M1型巨噬细胞和M2型巨噬细胞在感染后~1天都有明显的变化,而且变化相反。综上所述,本研究不仅获得了小鼠模型中细菌负荷、温度差距和免疫反应的实时和长时间的体内数据。金黄色葡萄球菌感染,但也发现感染后 1 天是免疫反应的关键时间点金黄色葡萄球菌感染。我们的研究将有助于在动物水平上同步、精确地研究细菌感染后复杂的动态关系。
更新日期:2024-03-13
down
wechat
bug